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The ability to spontaneously feel a beat in music is a phenomenon widely

believed to be unique to humans. Though beat perception involves the coordi-

nated engagement of sensory, motor and cognitive processes in humans, the

contribution of low-level auditory processing to the activation of these networks

in a beat-specific manner is poorly understood. Here, we present evidence from a

rodent model that midbrain preprocessing of sounds may already be shaping

where the beat is ultimately felt. For the tested set of musical rhythms, on-beat

sounds on average evoked higher firing rates than off-beat sounds, and this

difference was a defining feature of the set of beat interpretations most commonly

perceived by human listeners over others. Basic firing rate adaptation provided a

sufficient explanation for these results. Our findings suggest that midbrain adap-

tation, by encoding the temporal context of sounds, creates points of neural

emphasis that may influence the perceptual emergence of a beat.
1. Introduction
When listening to a rhythmic sound such as music, one can often find and tap

along with a steady (isochronous) beat. In principle, many possible interpret-

ations of beat could exist, but in practice, only very few of them tend to be

chosen by listeners. What could be the neurophysiological determinant for

where in a rhythmic sound the beat is felt?

At the highest level, human studies have revealed beat-specific entrainment

of cortical oscillations [1–5]. A promising candidate mechanism for the entrain-

ment of these oscillations may be the cortico-basal ganglia–thalamocortical

loop [6], of which the basal ganglia are thought to be particularly important

for beat perception [7–9] and time perception [10,11]. If the dynamics of

these circuits serve to select an interpretation of beat out of the many theoreti-

cally possible ones, then beat-relevant precursors may already be present as a

result of low-level auditory processing. However, the influence of low-level

auditory processing on-beat perception has not yet been characterized. We

hypothesized that adaptive processes in the brainstem, which are common

across mammalian species [12–16] regardless of whether they can synchronize

their movements to a rhythmic stimulus [17], may strongly influence which beat

interpretations are chosen over others. We tested this hypothesis by investi-

gating the correspondence between brainstem processing in a rodent model

and beat perception in humans.

Seven rhythmic patterns [18] constructed from identical broadband noise

bursts were played to anaesthetized gerbils while recording from the central

nucleus of the inferior colliculus (IC), the major midbrain relay through which

ascending information from the auditory nerve passes on its way to the cortex.
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Figure 1. On-beat responses are on average stronger than off-beat responses. (a) An example unit’s normalized peri-stimulus time histogram (PSTH) to stimulus pattern
P2 at 1 � tempo. The last three complete cycles of this pattern are shown together with the stimulus trace above. The coloured numbers indicate noise bursts, green
being on-beat and blue being off-beat. Normalization was done by dividing each unit’s firing rate concatenated across all seven stimuli by its standard deviation. (b)
Raster-style plot showing tap times of human listeners across trials and cycles of this stimulus. Each dot marks the timing of a tap, each row of dots shows tap responses
for a single cycle of the stimulus pattern and different colour dots distinguish the tap responses from different subjects. Beneath is a histogram of tap times pooled across
subjects, cycles and trials for this stimulus. A clear, regular tapping pattern is present, which indicates a strong consensus among listeners to hear four beats in this 16-
event sequence, timed on the 1st, 5th, 9th and 13th interval. (c) Normalized firing rate in response to on-beat (left, in green) and off-beat (right, in blue) noise bursts
for the highlighted cycle shown in panel a. To quantify a unit’s mean on- and off-beat response, the firing rate over the first 40 ms of each sound-evoked response to
on-beat and off-beat sounds (red boxes) across all 33 s of all stimuli was averaged (the averages based on just the highlighted cycles are shown for demonstration
purposes), and the mean of the result was taken. (d ) Scatter plot showing the mean on-beat response for each unit as a function of that unit’s mean off-beat response.
Most points fall well above the main diagonal, indicating that, on average, on-beat sounds evoked stronger responses than off-beat sounds.
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The same rhythms were also played to human listeners who

simply tapped along to the beat they perceived. While the

influential study by Nozaradan et al. [18] provided the

inspiration for this work, the frequency domain method

used in that study does not yield a dependable measure of

beat entrainment (see electronic supplementary material,

figure S4). Here, we present a novel time domain analysis

that avoids ambiguities in the interpretation of frequency

domain-based analyses [19]. On average, neural activity

recorded from the midbrain was stronger on the beat than

off the beat, and this asymmetry was a defining feature of

the beat interpretations chosen out of all possible ones. Fur-

thermore, adaptation provided a parsimonious account for

our results. Together, these findings strongly support the

possibility that midbrain adaptation may already be shaping

where the beat is ultimately perceived in musical rhythms.
2. Results
(a) On-beat sounds evoke stronger neural responses on

average than off-beat sounds
We hypothesized that low-level stimulus processing might

already create a neural ‘emphasis’ that accompanies the

perceptual emphasis felt on the beat, and that this emphasis

might be observable as higher firing rates on the beat than

off the beat.
Neural activity was recorded extracellularly from 29

single units and 220 multi-units originating from 149 record-

ing sites in the central nucleus of the IC of four gerbils in

response to seven rhythmic sound patterns. The chosen

rhythmic sound patterns were taken from a previous

human electroencephalography (EEG) study [18] and are

described in detail in the Material and methods. Each

sound pattern consisted of a repeated sequence of 12 or 16

equal-duration ‘events’ separated by brief silent gaps,

where events were either silent intervals or identical

broadband noise bursts. Beat locations for each rhythm

were determined based on the most common tapping pat-

tern across 13 human listeners (figure 1b; see electronic

supplementary material, figure S1 for tapping data for all

stimuli). Noise bursts were classified as either being

‘on-beat’ if taps were aimed at their onset, or ‘off-beat’

otherwise. The mean firing rate during the first 40 ms of

all on-beat and off-beat noise bursts was calculated for

each unit (figure 1c). A time window of 40 ms was

chosen because it was the longest time window that

allowed comparison across all seven stimuli because it

corresponded to the duration of the noise burst in the fast-

est pattern. Figure 1d illustrates each unit’s average on-beat

and off-beat response across all sound events and all rhyth-

mic patterns (see electronic supplementary material, figure

S2 for on-beat versus off-beat responses for each stimulus

individually). On average, neural responses were signifi-

cantly stronger to on-beat sounds than to off-beat sounds,

http://rspb.royalsocietypublishing.org/
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Figure 2. Exploration of on – off for all possible combinations of beat periods and beat positions. (a) Heat maps represent on – off for all possible combinations of
beat grouping ( y-axis) and beat position (x-axis) for each of the seven rhythmic sound patterns tested. Yellow and cyan boxes mark the most and second most
common beat interpretations reported by human listeners, respectively. Brackets indicate those groupings whose theoretical tapping frequencies are in the range
0.5 – 4 Hz, the range within which beat is typically perceived [20]. (b) Same as panel a, but based on population firing rates. (c) All hypothetical on – off values for
sound (grey) and the two most commonly perceived beat structures (red), pooled across the seven stimuli. (d ) Same as panel c, but for population firing rates.
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despite all sound events being acoustically identical noise

bursts (figure 1d, p , 1026, Wilcoxon paired signed-rank

test, n ¼ 248 units).

(b) A large on-beat neural emphasis is a defining
feature of the perceived beat

Next, we explored whether a large neural emphasis on the

beat might explain why some beat structures were more com-

monly perceived than other possible ones. Our hypothesis

here is that sound events that evoke a particularly strong

neural response are more likely to be perceived as being

on-beat, which would support the possibility that systematic

differences in evoked response strength at low levels of the

auditory pathway might predetermine both the grouping

and phase of the beat interpretation that is ultimately selected

at higher levels.

A beat structure as we define it consists of a beat period

and a beat position. For a given rhythmic pattern, the beat

period is determined by the integer number of events

(noise bursts or silent intervals) that listeners grouped

together while tapping. The beat position refers to the

temporal frame or ‘phase’ of the tap intervals, and is set by

the time points that the listeners report as on-beat with

their taps. Beat periods were considered ‘hypothetically pos-

sible’ if they divided up the rhythmic pattern into an integer

number of equal length intervals. Beat periods that were not

an integer fraction of the number of events in the pattern

would have put the beat on different places in successive rep-

etitions of the pattern, and none of our subjects exhibited

such a ‘beat precession.’ Thus, for rhythms P1 and P3, both

12-event patterns, possible beat periods consisted of tapping

a beat once every 2, 3, 4, 6 or 12 events, while for the 16-event

patterns, possible beat periods would be 2, 4, 8 or 16 events
long. Note that we do not consider a beat period of 1,

where all events would be on-beat with none off the beat.

Possible beat phases refer to the N possible positions at

which the beat could start for a beat period that contains N
events. Twelve-event patterns therefore had 2 þ 3 þ 4 þ 6 þ
12 ¼ 27 possible beat structures, while the 16-event pattern

2 þ 4 þ 8 þ 16 ¼ 30 possible beat structures.

Population neural activity was calculated as the average

firing rate across all single and multi-units. We classified the

mean event-evoked population firing rate during the first

40 ms of each event (noise burst or silence) as being on-beat

or off-beat, where ‘on-beat’ and ‘off-beat’ were defined by

each beat period and beat position combination for each poss-

ible beat structure. For comparison, the average sound content

at on-beat and off-beat positions was calculated for each beat

structure, counting a sound event as 1 and a silent interval

as 0. The on-beat emphasis for sound content and population

neural activity was calculated as the difference between its

mean on-beat and off-beat values (on–off).
Figure 2a,b shows the on–off values for all possible beat

structures in the seven stimulus patterns tested. Yellow and

cyan boxes mark the most and second most commonly per-

ceived beat structures, respectively. All on–off values for

sound and population neural activity, pooled across the

seven stimuli, are shown in the histograms in figure 2c and

2d, respectively. The beat structures preferred by our listen-

ers, shown in red, have significantly larger on–off values

than the pool of all possible beat structures, shown in grey,

for both sound and neural activity (firing rates: p , 1026;

sound: p , 1024, Wilcoxon rank-sum test, N ¼ 198 possible

beat structures and 14 perceived beat structures).

It follows from a preference for beat structures with high

on-beat sound content that on-beat positions would evoke

relatively large on-beat neural responses. However, a

http://rspb.royalsocietypublishing.org/
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consequence of neural processing is that relatively fewer

possible beat structures overall resulted in high on–off
values (figure 2c,d). Quantitatively, the distribution over all

on–off values for firing rates (figure 2d ) showed higher skew-

ness, or a longer right tail, than the distribution of on–off for

sound content (figure 2c; p , 0.01, paired sign test, N ¼ 7

stimulus patterns).

Taken together, these findings would suggest that, out of

the pool of all possible beat structures, those that are per-

ceived by listeners tend to be those with a relatively large

on-beat neural emphasis and relatively high underlying on-

beat sound content, and that midbrain processing of sound

further restricts the set of possible beat structures that later

stages of the nervous system may select. Though commonly

chosen beat structures show high on–off values for both

sound content and population neural activity, it is the

neural activity that better distinguishes from all candidate

beat structures those that were actually perceived by listeners.
(c) Strength of on-beat neural emphasis varies
systematically with the profile of each recorded
inferior colliculus unit’s firing pattern

A key advantage of extracellular recordings over non-inva-

sive imaging techniques is the temporal and spatial

resolution to observe response dynamics of single cells

(single units) and small groups of cells (multi-units).

Response patterns in the IC are known to be highly diverse,

and to investigate the contribution of neurons with different

response properties on the observed on-beat emphasis at the

neural population level, we first performed hierarchical clus-

tering on normalized single-unit and multi-unit firing rates in

response to all seven stimulus patterns concatenated across

time (see Material and methods). This resulted in eight clus-

ters containing our 249 single and multi-units (figure 3b), of

which one cluster was excluded because it contained only

one unit. Previous studies in IC [21,22] suggest that single-

unit and multi-unit responses are comparable, and this

would appear to be the case for our data too (figure 3c).

The seven clusters identified are not meant to provide a

definitive or exhaustive categorization of the response types

that exist within IC, but simply provide a principled set of

response profiles that are representative of our data and
show characteristics of ‘onset,’ ‘on-sustained’ and ‘sustained’

firing patterns previously identified in the IC [23]. ‘Onset’

(C1, C5, C7), ‘on-sustained’ (C2–C4) and ‘sustained’ (C6)-

type units roughly account for 26%, 63% and 11% of our

sample, respectively.

To test whether the on-beat neural emphasis varied by

response shape, the normalized on-beat and off-beat

sound-evoked responses were re-examined from

figure 1d. Labelling units by cluster reveals that ‘onset’-

type units (C1, C5, C7) appear furthest from the diagonal

and therefore show the strongest emphasis to on-beat

sounds (figure 3d ). ‘Sustained’-type units (C6) appear

near the diagonal, and ‘on-sustained’-type units (C2–C4)

fall in between.
(d) Adaptation may explain why neural responses are
stronger on the beat

We hypothesized that a simple explanation for the evident

beat processing occurring in the midbrain could be firing

rate adaptation, which is the tendency for neural firing

rates to decrease to a stimulus if it is prolonged or repeated

at high rates. In the context of our patterns, adaptation

would result in relatively weaker responses to sounds that

are preceded by other sounds in the recent past, and in rela-

tively stronger responses to sounds that are preceded by long

periods of silence. This pattern is observable qualitatively

(figure 3), so we asked whether firing rate adaptation could

explain what we have so far quantified as the contribution

of midbrain activity towards beat processing.

Adaptation was quantified for each unit by fitting an

exponential function to its sound-evoked firing rate as a func-

tion of the amount of silence immediately preceding the

sounds. Silent intervals ranged from the 10 ms between con-

secutive noise bursts to the 3 s that separated each 33 s

rhythmic pattern from the next. Data and exponential fits

from an example unit from each cluster are shown in

figure 4a. When the population firing rate was calculated

using each unit’s exponential fit rather than the real data,

the resulting on–off values for all candidate beat structures

showed a very high correlation with the real data

(figure 4b), with an R2 value of 0.987 (see electronic sup-

plementary material, figure S2 for on–off heat maps and

http://rspb.royalsocietypublishing.org/
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histograms based on model estimates of the firing rate).

Adaptation is therefore likely to be a parsimonious account

for why neural responses in the gerbil IC to otherwise iden-

tical sounds differ depending on the temporal context, and

our results (figures 1 and 2) suggest that these differences

may be of direct relevance for beat perception.
3. Discussion
By using an approach that combines rodent electrophysi-

ology and human psychoacoustics, we present evidence

that low-level processing of rhythmic sounds may exert a

more direct influence on beat perception than previously

appreciated. Across the set of rhythmic sound patterns

tested, the perceptual emphasis felt as a beat was

accompanied by a subcortical neural emphasis. An evalu-

ation of all hypothetically possible interpretations of beat

for each rhythmic pattern revealed that a large on-beat

neural emphasis may be a defining feature of the beat struc-

tures actually perceived by listeners, perhaps explaining the

tendency for listeners to typically agree on their interpret-

ation of beat for a given rhythm. A diverse set of firing

patterns contribute to the on-beat neural emphasis observed

at the population level, and we showed that ‘onset’-type

cells in the IC show the largest on-beat neural emphasis com-

pared to other cell types. These results could be sufficiently

explained through a simple exponential fit that models

adaptation.

An asymmetry in response strength to acoustically identical

sounds comprising a rhythmic pattern has been previously

reported in humans based on cortical EEG [24–26]. The

asymmetry in responses observed in the human studies,

however, reflected subjective accenting, which is a cognitive,

attention-driven process. By contrast, our results, despite show-

ing a similar emphasis on some sounds over others despite all

sounds being identical, are not a reflection of high-level or cog-

nitive processes because they can be well described by a simple

adaptation model. This strongly suggests that some preproces-

sing of sound that is relevant to beat perception is already

occurring in the brainstem. Adaptation time constants in the

IC are robust to a number of stimulus manipulations including
duty cycle [13]; it would be interesting to find stimulus manip-

ulations that do alter adaptation and investigate whether such

manipulations also alter beat perception in a consistent

manner. Adaptation has been characterized throughout the

auditory system across a wide range of mammalian species,

including humans (see [27] for a review). This cross-species

generality strongly suggests that the adaptive mechanisms

described in this study are also present in humans during

beat perception. Though the response patterns we see may

be better described as a form of onset detection rather than

beat-specific processing, the (average) physiology need not

have corresponded with the chosen beat, and adaptation

need not have described the physiology. Our results therefore

implicate subcortical adaptation as a relevant stage in beat pro-

cessing, which suggests that beat perception may, to an extent,

be an emergent property of auditory processing that is not

entirely culturally dependent.

A natural extension of this hypothesis is that though

rodents and other non-human species rarely exhibit the abil-

ity to synchronize their movements to rhythmic stimuli with

the consistency or precision of that of humans [9,17,28], they

could nonetheless be able to perceive musical beat. The gra-

dual audiomotor evolution hypothesis [29] is consistent

with this idea, suggesting that humans’ superior movement-

synchronization ability may be due to stronger coupling

between auditory and motor areas in humans than in other

animals. However, the idea that non-human animals can

perceive beat remains to be tested experimentally, perhaps

through tasks where animals are asked to discriminate,

rather than synchronize their movements to, different

rhythmic sound sequences.

Our finding that bottom-up physiology may constrain the

set of beat interpretations that can be perceived must be

considered in the context of other well-known constraints

on-beat perception, including the 0.5–4 Hz frequency range

within which a beat is typically perceived [30, p. 28], and a

general preference for binary (e.g. 2, 4) groupings over

ternary (e.g. 3, 6) or other groupings [30, p. 44; 31].

Furthermore, the perceived beat and its neural signatures

can be modulated at will by top-down mental imagery of

beat structure [3,32,33]. In the light of these higher-level

considerations, we suggest that the perceived beat may
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ultimately depend on both a sound’s adapted representation

in the brainstem, and the set of metrical templates that are

common to the listener, with our findings providing evidence

of a bias towards configurations that maximize the difference

between average on-beat and off-beat responses. Interest-

ingly, this hypothesis parallels the construction of many

computational beat-detection algorithms, which typically

consist of two stages: a driving function and a periodicity
detector [34,35]. The driving function, analogous to the

subcortical representation observed here, is a processed ver-

sion of the raw audio signal, and a range of beat-detection

algorithms employ onset detection to arrive at their driving

function. The periodicity detector then extracts periodicities

from the driving function and determines the most probably

interpretation of the beat. Our results suggest that adaptive

phenomena that are already present at early stages of the

auditory pathway may play an important role in detecting,

or perhaps rather, emphasizing onsets, thereby shaping the

‘driving function’ of the beat detector.

Our work may also relate to other theoretical models of

beat perception. The rule-based model of Povel & Essens

[36] states that perceptual accents, which are felt for sounds

that differ in loudness or in frequency relative to their sur-

roundings, can also arise purely through a temporal

context. Specifically, they posit that (i) an isolated sound

will be perceived as accented, (ii) the second of two similar

sounds played sequentially will be perceived as accented

and (iii) the first and last of three or greater similar sounds

in a sequence will be perceptually accented. The locations

of perceptual accents within a rhythm (which may not be at

isochronous intervals) determine the period and phase of

the most likely periodic pulse. The adaptation mechanisms

we observed here would place a neural emphasis on the

first sound of any sequence and would thus not explain

these empirical observations, which is a likely indication

that adaptation is not the whole story. The empirical obser-

vations might reflect an intermediate stage between low-

level representation and the fully formed beat percept, and

it would be an interesting follow-up to determine why, for

example, the second of a group of two sounds is perceived

as accented when the first would evoke higher firing rates

subcortically. Other influential models suggest the impor-

tance of the attentional system [37] and the motor system

[38–40]. Neural resonance theory, an influential compu-

tational model that consists of a ‘sensory’ and a ‘motor’

layer of nonlinear oscillators whose interactions are modelled

as a dynamical system, makes explicit predictions about

neural activity and perception [41,42].

This study represents an important first step towards

understanding how low-level auditory processing drives

beat perception, and opens a number of avenues for future

exploration. Most interesting among them would be to trace

beat processing through different structures in the brain to

determine where and how beat-specific neural activity

arises. We suggest that the cortico-basal ganglia–thalamo–

cortical loop [6] may be a promising circuit to probe. Given

that the IC has direct and indirect projections to the thalamus,

we speculate that the large periodic pushes we observed from

on-beat positions interspersed with relatively quiescent off-

beat intervals due to adaptation could play a critical role in

coordinating the activity of the cortico-basal ganglia–

thalamo–cortical loop in response to rhythmic sounds. This

is consistent with human EEG findings that describe neural
entrainment to rhythmic sound sequences in the auditory

cortex [32,42,43], but not in the auditory brainstem [44].

The exact relationship between cortical entrainment

measured using EEG and spiking responses in the cortex is

still a crucial open question. The time domain methods devel-

oped here are ideal for cross-species exploration of beat

processing in different brain areas and can easily be built

upon for more complex stimuli such as music. Note that

depending on the temporal and spatial resolution of the

recording method used, neural response latencies may first

need to be subtracted or deconvolved from the signal. Impor-

tantly, the time domain methods developed here also avoid

the significant shortcomings of the frequency domain

method used in the original Nozaradan et al. [18] EEG

study (see electronic supplementary material, figure S4).

To conclude, we show that brainstem processing may

restrict the range of possible beat interpretations for a given

rhythmic sound pattern. Onset-type neural responses are par-

ticularly important for this type of processing, and this

processing is very well captured by a model based on expo-

nential adaptation. Our results imply that a consequential

part of beat perception may not be culturally determined

but may be due to simple brainstem processes that are in-

born or learnt from the low-level statistical characteristics of

sensory input [12,13,15]. This observation is a demonstration

of how the nature of high-level brain processes is often biased

in its characteristics by ‘primitive,’ low-level features of the

nervous system.
4. Material and methods
(a) Sound stimuli
Seven out of nine sound patterns from Nozaradan et al. [18]

were recreated, but instead of pure tone bursts we used

bursts of frozen pink (1/f ) noise in order to increase the

likelihood of driving neural activity across all recording

sites, irrespective of frequency tuning. The patterns used by

Nozaradan et al. [18] were inspired by the work of Povel &

Essens [36] and were designed to preferentially induce a

beat percept based on a grouping of four events at the 1 �
tempo, with additional beat groupings possible based on

subdivision or multiples of the preferred grouping. The

seven patterns were constructed from three distinct base pat-

terns (summarized in figure 5), hereafter referred to as P1, P2

and P3, played at different speeds. P1 and P3 consisted of 12

‘events’ and P2 consisted of 16 ‘events’. At the slowest tempo,

events were presented at a rate of 5 Hz, which meant that

each event was 200 ms in duration and was either 200 ms

of silence or a 190 ms burst of frozen pink noise followed

by 10 ms of silence. At this 5 Hz presentation rate, P1 and

P3, each consisting of twelve 200 ms events lasted 2.4 s,

while P2 lasted 3.2 s. Each pattern was then looped continu-

ously over 33 s.

P1 and P2 were additionally presented at faster event

rates, or tempi. In the original study, this was done in

order to investigate the effect that the tempo of a sound pat-

tern had specifically on perception and on EEG responses

because the shape of the sound envelope spectrum was rela-

tively consistent for the same pattern played at different

tempi. P1 was presented at 5 Hz, 10 Hz and 20 Hz, (1 �,

2 � and 4 � the original tempo), P2 was presented at 5 Hz,

10 Hz and 15 Hz, (1 � , 2 � and 3 � the original tempo)

http://rspb.royalsocietypublishing.org/
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and P3 was presented at 5 Hz only (1 � ). The complete set of

seven patterns thus comprised P1 and P2 at three different

rates each plus P3 at an event rate of 5 Hz only. At the accel-

erated tempi, the original 190 ms pink noise token used for

the noise events was truncated to 90 ms, 56 ms or 40 ms for

the 2 � , 3 � and 4 � conditions, respectively, in each case

followed by 10 ms of silence, while the silent intervals were

shortened accordingly from 200 ms to 100 ms, 66 ms and

50 ms for the 2 � , 3 � and 4 � conditions, respectively.

The tempi and patterns described here are the same as

those used in Nozaradan et al. [18].
(b) Electrophysiological recordings
(i) Surgical protocol
The recording methods were identical to those used in

Schnupp et al. [22]. All procedures were approved and

licensed by the University College of London, London, UK

(UCL) Animal Welfare and Ethical Review Body (AWERB)

as well as the UK home office in accordance with governing

legislation (ASPA 1986). Four male Mongolian gerbils weigh-

ing between 70 and 80 g were anaesthetized with an

intraperitoneal injection of 0.65 ml per 100 g body weight of

a mixture of five parts of ketamine (100 mg ml21), one part

of xylazine (20 mg ml21) and 19 parts of physiological

saline. To maintain anaesthesia, the same solution was

infused continuously during recording at a rate of approxi-

mately 2.1 ml min21. A craniotomy was performed centred

on the lambdoid suture and extending 3.5 mm lateral from

the midline on the right-hand side. The visual cortex directly

dorsal of the IC was aspirated and the sinus was carefully

retracted, exposing the IC. Pinnae were removed before the

placement of headphones.

Recordings were made using a 64-channel silicon probe

(Neuronexus Technologies, Ann Arbor, MI, USA) with

175 mm2 recording sites arranged in a square grid pattern at

0.2 mm intervals along eight shanks with eight channels

per shank. The probe was inserted into the IC in a medio-

lateral orientation for two of the four animals, and in a

rostro-caudal orientation for the remaining two animals, in

all cases aiming for the central nucleus of the IC.
The seven rhythmic sound stimuli were assembled into a

block, with 3 s of silence separating each 33 s stimulus loop

from the next. Each block was repeated 10 times at each pen-

etration site. Stimuli were presented binaurally through

headphones at 80 dB SPL. Sounds were presented with a

sampling rate of 48 828 Hz, and data were acquired at a

sampling rate of 24 414 Hz using a TDT system 3 recording

set-up (Tucker Davis Technologies).

(ii) Data preprocessing
This work made use of the Open Science Data Cloud (OSDC)

[45]. Raw voltage traces from the 64-channel recordings were

obtained using custom-written MATLAB (Mathworks) soft-

ware. The raw voltage traces were low-pass filtered at

100 Hz and down-sampled to 200 Hz for analysis of local

field potentials. Offline spike sorting and clustering was

done on the raw data using an automated expectation-

maximization algorithm (Spikedetekt/Klustakwik) [46], and

clusters were manually sorted using Klustaviewa (Cortical

Processing Lab, University College London). Firing rates for

multi-units were calculated by binning spike times into

5 ms bins, which resulted in firing rate traces at an effective

sampling rate of 200 Hz.

To determine whether multi-unit activity and LFPs were

reliably driven by our sound stimuli, a noise power to

signal power cut-off of 40 was chosen [47]. Units that failed

by this measure of repeatability were excluded from further

analysis, leaving 194 recording sites from which local field

potentials were analysed, and from which 249 distinct,

reliably driven spiking units could be isolated. Of those, 29

were identified as single units and the rest were deemed

multi-units. All analysis was performed using custom-written

MATLAB code.

(iii) Clustering
To organize the variety of response patterns observed among

IC units into representative groups, we clustered their period

peri-stimulus time histograms (PSTHs) using a two-step pro-

cess consisting of a principal component analysis (PCA) to

reduce the dimensionality of the response patterns, followed

by standard hierarchical clustering (figure 6). First, the PSTH

of each unit in response to pattern P2, binned at 20 ms, was

normalized to have ‘unit power’ by dividing the PSTH by

the standard deviation across all bins. To reduce the dimen-

sionality of each response down from 160 time bins, the

PSTH vectors were ‘centred’ by subtracting their mean.

Finally, PCA was performed using the MATLAB function

princomp.

The ‘elbow method’ was applied to determine a cut-off in

the number of PCs beyond which the proportion of variance

explained began to asymptote (figure 6b). Five PCs (out of

N ¼ 249), which together accounted for 70% of the variance,

was chosen as the cut-off. The first five principal component

loadings for each unit were then subjected to hierarchical

clustering using the MATLAB function cluster with a Euclidean

distance metric. To determine the number of clusters in the

data, the percentage of response variability accounted for

by optimally splitting the dataset into between three and 30

clusters was calculated. The ‘elbow method’ was applied

again to choose eight clusters as the point at which the var-

iance in PSTH patterns explained by a model, which

replaced each unit’s PSTH with the average PSTH for the

http://rspb.royalsocietypublishing.org/
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unit’s cluster, began to level off with additional clusters

(figure 6c). Of the eight clusters, one contained only 1 unit

and was therefore excluded from further analysis, leaving a

total seven clusters consisting of 248 single and multi-units.

(c) Psychoacoustics
The experimental methodology was approved by the local

Ethical Review Committee of the Experimental Psychology

Department of the University of Oxford, and conforms to

the ethical standards in the 1964 Convention of Helsinki.

Fifteen paid participants aged 22–45 with normal hearing

were recruited. Three subjects were authors on this study,

and five had .3 years of musical training. Subjects were

instructed to listen to the rhythms that would emerge from

a masking noise that was ramped down over 3 s, to begin

tapping with a finger on a handheld button once they had

found the beat, and to continue tapping steadily until the

rhythm stopped. Stimuli were played through a TDT RM1

mobile processor (Tucker Davis Technologies, Alachue, FL,

USA), and presented diotically at 50 dB SPL over Sennheiser

HD 650 headphones (Wedemark, Germany). The TDT device

delivered the stimuli and recorded button presses, allowing

precise tap times to be measured. Patterns were randomly

interleaved and presented a total of three times over the
course of the experiment. Two subjects whose tapping pat-

terns were not isochronous were excluded from further

analysis, leaving a total of 13 subjects.

Consensus beat frequency and phase were determined for

each stimulus based on the most common tapping pattern

recorded from our human participants. ‘On-beat’ sounds

were all sounds at a consensus tap location, and ‘off-beat’

sounds were all other sounds that did not coincide with a

consensus tap location.
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