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Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation
of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of
activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or
absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones
and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and
desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked
by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desyn-
chronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely
weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to
activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These
findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be
considered as an explicit variable in all studies of sensory processing.
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Introduction
The representation of sensory inputs in the activity of primary
cortical areas provides the basis for higher-level processing. Char-
acterizing this primary representation is critical for understand-
ing sensory function, as its nature determines the suitability of
different strategies for subsequent computations, and its fidelity
constrains behavioral performance. The study of sensory repre-
sentations is complicated by the fact that neuronal activity is
determined not only by external inputs, but also by other sources
that are internal to the brain. In cortex, the processing of incom-
ing stimuli can depend strongly on brain state (Steriade et al.,
2001; Castro-Alamancos, 2004a; Haider and McCormick, 2009;
Harris and Thiele, 2011). In asleep, anesthetized, and awake an-
imals, the state of the cortex can vary along a continuum of syn-
chronized and desynchronized states with different population
dynamics. When the cortex is in a synchronized state (also known as
an inactivated state), activity is characterized by slow fluctuations

between intrinsically generated up and down states, corresponding
to periods of concerted spiking and silence across large areas, and
these up and down states play a major role in shaping activity pat-
terns (Marguet and Harris, 2011; Okun et al., 2012). Synchronized
states are commonly observed during slow-wave sleep and under
certain anesthetics, but recent studies have shown that the cortex can
also be in a synchronized state when animals are awake (Crochet and
Petersen, 2006; Greenberg et al., 2008; Poulet and Petersen, 2008; Xu
et al., 2012; Luczak et al., 2013; Polack et al., 2013; Sachidhanandam
et al., 2013; Tan et al., 2014; Zhou et al., 2014).

During active sensory processing in awake animals, the cortex
often transitions to a desynchronized (or activated) state in which up
and down states are suppressed and activity is strongly modulated by
sensory inputs. Studies in the visual and somatosensory systems have
observed dramatic differences between responses in synchronized
and desynchronized states (Castro-Alamancos, 2004b; Hasenstaub
et al., 2007; Goard and Dan, 2009; Hirata and Castro-Alamancos,
2011), and there are indications that such differences may also be
present in the primary auditory cortex (A1; Ter-Mikaelian et al.,
2007; Curto et al., 2009; Otazu et al., 2009; Marguet and Harris, 2011;
Guo et al., 2012; Zhou et al., 2014). In this study, we measured the
activity of populations of single units in gerbil A1 in synchronized
and desynchronized states under different anesthetics and observed
strong effects that were evident at both the single cell and population
level. We found that cortical state modulated the selectivity, reliabil-
ity, and diversity of spike patterns, as well as the strength of noise
correlations, in a manner that greatly impacted the fidelity of the
population code.
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Materials and Methods
In vivo recordings
Adult male gerbils (70 –90 g, P60 –P120) were anesthetized for surgery
with one of three different anesthetics: ketamine/xylazine (KX), fentanyl/
medetomidine/midazolam (FMM), or urethane. For KX, an initial injec-
tion of 1 ml per 100 g body weight was given of ketamine (100 mg/ml),
xylazine (2% w/v), and saline in a ratio of 5:1:19, and the same solution
was infused continuously during recording at a rate �2.5 �l/min. For
FMM, an initial injection of 0.2 ml per 100 g body weight was given
with fentanyl (0.05 mg/ml), medetomidine (1 mg/ml), and midazo-
lam (5 mg/ml) in a ratio of 4:1:10, and the same solution was infused
continuously during recording at a rate of �0.08 �l/min. For ure-
thane, an initial injection of urethane and saline containing 0.15 g of
urethane per 100 g body weight was given. Internal temperature was
monitored and maintained at 38.7°C and heart rate was consistently
�300 bpm under all anesthetics. A small metal rod was mounted on

the skull and used to secure the head of the animal in a stereotaxic
device in a sound-attenuated chamber. A craniotomy was made over
A1, an incision was made in the dura mater, and a multitetrode array
(Fig. 1A; Neuronexus) was inserted into the brain. Only recordings
from A1, determined by the direction of the tonotopic gradient
(Thomas et al., 1993), were analyzed. Recordings were made between
1 and 1.5 mm from the cortical surface (most likely in layer V; Happel
et al. (2010)).

Sound delivery
Sounds were generated with a 48 kHz sampling rate, attenuated, and
delivered to speakers coupled to tubes inserted into both ear canals for
diotic sound presentation along with microphones for calibration. The
frequency response of these speakers measured at the entrance of the ear
canal was flat (�5 dB SPL) between 0.2 and 5 kHz. The properties of each
sound are given below.

Figure 1. Synchronized and desynchronized states in A1. A, A schematic diagram of the multitetrode array used to record A1 activity. B, Examples of a short segment of spontaneous activity
recorded in synchronized (under KX) and desynchronized (under FMM) A1. Top row, The LFP (0.1–100 Hz) recorded on each of the eight tetrodes with the signal for each tetrode shown in a different
color. Each tetrode signal is the sum across its four electrodes. Middle row, A raster plot of the spiking of all of the single units in the population. Each row shows the spike times for one cell. Bottom row, MUA; the
sum of the activity of all isolated single units after smoothing with a Gaussian window with a width of 50 ms. C, A scatter plot showing the low-frequency LFP power (1–20 Hz) and average correlation between
the MUA and spiking of each single unit for spontaneous activity in all of the synchronized (green) and desynchronized (purple) populations that were analyzed. D, A scatter plot showing the excess silence and
average mean spike rates for spontaneous activity in all of the synchronized (green) and desynchronized (purple) populations that were analyzed. E, The distributions of MUA spike rates during spontaneous
activity before and after randomizing the spike times of each cell for example synchronized and desynchronized populations. The filled distributions correspond to the actual activity and the lines correspond to
the distributions obtained from fifty different randomizations. The excess silence, i.e., the probability of complete silence in the actual activity of the population relative to that in the randomized activity, is
indicated. F, The distributions of CFs for the MUA on each tetrode for all of the synchronized (green) and desynchronized (purple) populations that were analyzed. The CF was the frequency at which the MUA was
most sensitive, i.e., the frequency for which the MUA was significantly larger than spontaneous activity at the lowest intensity.
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(1) Silence. Ten minutes without the presentation of any sound. The
spontaneous activity recorded during this period was used to
measure strength of up and down states based on the low-
frequency power in the local field potentials (LFPs), the correla-
tion between single-unit spiking and the multiunit activity
(MUA), and excess silence as described below.

(2) Tone set 1. Seventy-five millisecond tones with frequencies rang-
ing from 256 to 8192 Hz in 0.2 octave steps and intensities ranging
from 16 to 80 dB SPL in 8 dB steps with 5 ms cosine on and off
ramps and a 75 ms pause between tones. Tones were presented 10
times each in random order. Responses to these sounds were used
to measure frequency response areas (FRAs) and tuning width as
described below, as well as center frequencies for the MUA on
each tetrode.

(3) Tone set 2. Seventy-five millisecond tones with frequencies rang-
ing from 256 Hz to 3104 Hz in 0.6 octave steps at 56 dB SPL with
5 ms cosine on and off ramps and 75 ms pause between sounds.

Tones were presented 200 times each in random order. These
sounds were used to measure first spike latencies and tone respon-
siveness as described below.

(4) Frequency-modulated tones. Chirps in which the frequency either
increased from 64 to 8192 Hz or decreased from 8192 to 64 Hz at
speeds of 16, 32, 64, 128, 256, or 512 octaves/s with 2 ms cosine on
and off ramps and a 250 ms pause between chirps. Chirps were
presented 128 times each in the sequential order shown in Figure
2D. Responses to these sounds were used to measure direction and
speed selectivity, temporal precision, reliability, and information
as described below.

(5) Speech. One to three 2.5 s segments of female speech from the UCL
SCRIBE database (http://www.phon.ucl.ac.uk/resource/scribe) at
a peak intensity of 75 dB SPL. Each segment was presented be-
tween 256 and 1024 times in sequential order. Responses to these
sounds were used to measure temporal precision, reliability, and
information as described below. For decoding and analyses of

Figure 2. The impact of cortical state on responses to tones. A, FRAs for example populations in synchronized and desynchronized A1. Each image shows the average spike rate of responses to
tones of different frequencies and intensities for one cell. Cells were ordered according to how strongly their activity was modulated by the tones as measured by the variance in their average spike
rates across all frequencies and intensities. The two cells that were most weakly modulated in the synchronized population and the one cell that was most weakly modulated in the desynchronized
population are not shown. B, A scatter plot showing the percentage of cells in each synchronized (green) and desynchronized (purple) population that responded to the best frequency for that
population (i.e., the frequency that evoked a significant response from the largest fraction of cells) and the fraction of cells that responded significantly to at least one of the frequencies tested. A
response was considered significant if the average spike rate was �2 SDs above the average spontaneous rate. The median values are indicated by the arrows. C, The distribution of the frequency
tuning widths for cells in synchronized (green) and desynchronized (purple) A1. Tuning width was measured as the range of frequencies for which the average spike rate was at least half of its
maximum value for tones at 56 dB SPL. The median values are indicated by the arrows. D, The tone-evoked MUA for populations in synchronized (green) and desynchronized (purple) A1. The thin
lines show the MUA for each population in response to its best frequency, and the thick lines show the medians of the thin lines. The MUA for all populations were normalized to have the same sum.
The timing of the tone is indicated by the horizontal bar. E, The distributions of onset latencies for responses to tones at best frequency for all cells that responded significantly to tones in synchronized
(green) and desynchronized (purple) A1.

2060 • J. Neurosci., February 4, 2015 • 35(5):2058 –2073 Pachitariu et al. • State-Dependent Population Coding in A1



spike pattern similarity, responses to seven 0.25 s tokens of speech
were extracted from the responses to each 2.5 ms segment. When
separating trials in which the response to a token occurred during
an ongoing up state from those in which the token triggered an up
state, the responses to one token from each set were removed from
the analysis because those tokens did not reliably evoke a re-
sponse. For urethane experiments, 10 s of silence were inserted
between every 16 trials of speech.

Spike sorting
The procedure for the isolation of single-unit spikes consisted of (1)
bandpass filtering each channel between 500 and 5000 Hz, (2) whitening
each tetrode, i.e., projecting the signals from the four channels into a
space in which they are uncorrelated, (3) identifying potential spikes as
snippets with energy (Choi et al., 2006) that exceeded a threshold (with a
minimum of 0.7 ms between potential spikes), (4) projecting each of the
snippets into the space defined by the first three principal compo-
nents for each channel, (5) identifying clusters of snippets within this
space using KlustaKwik (http://klustakwik.sourceforge.net) and
Klusters (Hazan et al., 2006), and (6) quantifying the likelihood that each
cluster represented a single unit using isolation distance (Schmitzer-
Torbert et al., 2005). Isolation distance assumes that each cluster forms a
multidimensional Gaussian cloud in feature space and measures, in
terms of the SD of the original cluster, the increase in the size of the
cluster required to double the number of snippets within it. The number
of snippets in the “noise” cluster (nonisolated multiunit activity) for each
tetrode was always at least as large as the number of spikes in any single-
unit cluster. Only single-unit clusters with an isolation distance �20 were
analyzed. The average number of single-units per tetrode was similar in
recordings from synchronized (4.43) and desynchronized A1 (4.37).

Data analysis
Low-frequency LFP power. The low-frequency power in the LFP for each
population was measured from spontaneous activity (sound 1 described
above). For each tetrode on the array, the voltage signals were averaged
across the four channels. For each of these tetrode signals, the power
spectrum was computed using Welch’s averaged, modified periodogram
method for 6 s segments with 50% overlap. The low-frequency power
was measured as the sum of the power between 1 and 20 Hz. The values
reported for each population are the average across the eight tetrodes on
the array. The units associated with the reported values are arbitrary, but
are the same for all populations.

Correlation between single-unit spiking and multiunit activity in spon-
taneous activity. The degree of concerted spiking in each population was
measured from spontaneous activity (sound 1 described above) as the
average value of the correlation between spiking of each cell and the
MUA. The activity of each cell was represented as a spike-count vector
with 50 ms bins. The MUA for each population was defined as the sum of
the activity of all of the individual cells in the population. The correlation
between the single-unit spiking and MUA in spontaneous activity was
used to classify the cortical state as synchronized or desynchronized for
urethane experiments: during periods when the value was �0.2, the cor-
tex was classified as desynchronized, and during periods when the value
was �0.35, the cortex was classified as synchronized.

Excess silence. The degree of concerted spiking in each population was
measured from spontaneous activity (sound 1 described above) as excess
silence, defined as the fraction of time during which the population was
silent relative to that expected for a population of cells with the same
mean rates that were spiking independently. For this analysis, the activity
of each cell was represented as a spike count vector with 25 ms bins. The
fraction of time bins in which there were no spikes across the entire
population were compared before and after randomizing the spike times
of each cell.

Tone responsiveness. Responses to tone set 2 (sound 3 described above)
were evaluated in two ways: (1) the fraction of cells in each population
that responded significantly (average spike rate �2 SDs above average
spontaneous rate) to the best frequency for that population (i.e., the
frequency that evoked a significant response from the largest fraction of
cells), and (2) the fraction of cells that responded significantly to at least
one of the frequencies tested.

Frequency tuning width. The width of the frequency tuning curve for
each cell was measured from responses to tone set 1 (sound 2 described
above) at 56 dB SPL as the range of frequencies for which the spike rate
averaged over all trials was at least half of its maximum value. Spontane-
ous spike rates were not subtracted before measurement.

Direction selectivity. The direction selectivity index (DSI) for each cell
was measured from responses to frequency-modulated (FM) tones
(sound 4 described above). For each of the six FM speeds, the direction
selectivity index was measured from the average spike rate of responses to
the two directions as (higher rate � lower rate)/(higher rate � lower
rate). The DSI reported for each cell is the highest of the values measured
for the six speeds. Spontaneous spike rates were not subtracted before
measurement.

Speed selectivity. The speed selectivity index (SSI) for each cell was
measured from responses to FM tones (sound 4 described above). For
each of the two FM directions, the speed selectivity index was measured
from the average spike rate of responses to the six speeds as (highest
rate � lowest rate)/(highest rate � lowest rate). The SSI reported for each
cell is the higher of the two measured for the two directions. Spontaneous
spike rates were not subtracted before measurement.

Temporal precision. The critical level of spike timing precision for each
cell was measured from responses to speech (sound 5 described above)
using a method that we have described previously (Garcia-Lazaro et al.,
2013). The responses for each cell were represented as binary vectors with
2 ms bins and the single-spike information (Brenner et al., 2000) was
measured as described below. The original spike times were then jittered
by adding noise drawn from a uniform distribution and the information
was recomputed. The critical level of precision was defined as the amount
of jitter (i.e., the width of the noise distribution) that reduced the infor-
mation in the responses to 95% of its original value.

Reliability. The reliability of responses across trials for each cell was
measured from responses to speech (sound 5 described above) using a
method that we have described previously (Sahani and Linden, 2003). To
quantify reliability, we measured the signal-to-noise ratio (SNR) defined
as the ratio of unbiased estimates of the signal (repeatable) and noise (not
repeatable) response power with responses represented as binary vectors
with 2 ms bins.

Information throughput and efficiency. The mutual information be-
tween the stimulus and the responses of each cell was measured from
responses to speech (sound 5 described above). The mutual information
between two variables measures how much the uncertainty about the
value of one variable is reduced by knowing the value of the other. The
mutual information between a sensory stimulus and a neural response
can be computed as the difference between the entropy of the response
before and after conditioning on the stimulus:

I�r; s	 � H�r	 � H�r⎪s	 � � �
r

p�r	log2p�r	

� �
s

p�s	�
r

p�r � s	log2p�r � s	

To measure the information that is carried by spike trains about speech
without having to specify which features of the speech were relevant, we
used the approach pioneered by Strong et al. (1998) of discretizing a
continuous stimulus into separate “stimuli” in time. To measure infor-
mation, the total entropy of the response is compared with the average
entropy of the response in each time bin (the noise entropy):

I�r; s	 � H�r	 � H�r⎪t	 � � �
r

p�r	log2p�r	

� � �
r

p�r�t		log2p�r�t		�
t

We measured the single-spike information for each cell, which is equiv-
alent to the information in the peristimulus time histogram (PSTH;
Brenner et al., 2000), by representing responses as binary vectors with 2
ms bins and computing the information in single bin “words”. All infor-
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mation calculations were performed using the Direct Method via info-
Toolbox for MATLAB (Magri et al., 2009) with bias correction via the
shuffling method and quadratic extrapolation (Panzeri et al., 2007). The
stability of all calculations was verified by ensuring that the values ob-
tained using only half of the recorded trials differed from those obtained
using all trials by �5%.

Spike pattern similarity. The similarity of the spike patterns evoked by
different speech tokens for each population was measured from re-
sponses to speech (sound 5 described above). From each 2.5 s segment of
speech, responses to seven 0.25 s tokens were extracted. The responses of
each population to each trial of each token were represented as binary
matrices with rows corresponding to cells and columns corresponding to
10 ms time bins (see Fig. 5A). The similarity of trial-averaged spike pat-
terns was measured as the average value of the correlation between the
average responses across all pairs of tokens. The similarity of single-trial
spike patterns was measured as the fractional increase in the average
value of the Euclidean distance between the responses across all pairs of
tokens relative to the average value of the Euclidean distance between
spike patterns evoked by the same token.

The similarity of the spatial structure of the spike patterns was mea-
sured following the approach of Luczak et al. (2009). The spatial struc-
ture of spiking for each token was measured as the set of correlations
between the responses of each pair of cells (i.e., the correlations between
the rows of the binary response matrices). The similarity of the spatial
structure across tokens was measured as the average value of the corre-
lation between the set of pairwise correlations for all pairs of tokens.

The similarity of the temporal order of the spike patterns was mea-
sured following the approach of Luczak et al. (2009). The responses of
each cell to each trial of each token were represented as binary vectors
with 1 ms bins. The MUA for each population was defined as the sum of
the activity of all of the individual cells in the population. The temporal
order of spiking for each token was measured as the set of latencies
obtained by taking the center of mass of the correlation function between
each cell and the MUA (after smoothing with a Gaussian window with a
width of 8 ms). The similarity of the temporal order was measured as the
average value of the correlation between the sets of latencies for all pairs
of tokens.

Signal and noise correlations. The signal and noise correlations between
each pair of cells in each population were measured from responses to
speech (sound 5 described above). The response of each cell to each trial
was represented as a binary vector with 10 ms time bins. The total corre-
lation for each pair of cells was obtained by computing the correlation
coefficient between the actual responses. The signal correlation was com-
puted after shuffling the order of repeated trials for each time bin. The
noise correlation was obtained by subtracting the signal correlation from
the total correlation.

Population decoding. A support vector machine was trained (using the
LIBSVM package from http://www.csie.ntu.edu.tw/�cjlin/libsvm with
default parameters) to decode the single-trial responses of each popula-
tion to speech (sound 5 described above). From each 2.5 s segment of
speech, responses to seven 0.25 s tokens were extracted. The responses of
each population to each trial of each token were represented as binary
matrices with rows corresponding to cells and columns corresponding to
10 ms time bins (see Fig. 5A). The classifier was trained on responses to
75% of trials and used to predict which token evoked the responses on
other 25% of trials. The values reported for each population are the
average performance obtained using 10 different subsets of trials for
training and prediction. To test the effects of noise correlations on de-
coding, the order of repeated trials for each cell for each time bin were
shuffled before training and prediction.

Classification of up and down states. To classify up and down states in
synchronized A1, the MUA was computed as described above and rep-
resented as a spike count vector with 10 ms time bins. The MUA was
filtered with a 10 bin median filter and the population was considered to
be in an up state in any bin in which the filtered MUA was greater than
zero.

Separation of trials in which the response to a speech token occurred
during an ongoing up state from those in which the token triggered an up
state. For responses to speech in synchronized A1, the MUA was com-

puted as described above and represented as a spike count vector with 5
ms time bins. The MUA was filtered with a 3 bin median filter and, for
each token, the time of the first peak in the mean MUA across trials that
was a least 75% as large as the maximum overall value was determined.
Trials in which there was no activity within �25 ms of this peak were
ignored. For the remaining trials, if there was any activity in the period
from 75 to 25 ms before this peak, the response was classified as having
occurred during an ongoing up state; otherwise, the response was classi-
fied as having triggered an up state.

Results
Synchronized and desynchronized states in A1
There are many aspects of neural activity that have been used to
define cortical states. Recent studies comparing membrane po-
tentials, single-unit spiking, MUA, and LFPs under different ex-
perimental conditions have demonstrated that cortical states are
not discrete, but rather form a continuum with dynamics that are
observable across different intracellular and extracellular proper-
ties (Harris and Thiele, 2011). At one end of this continuum are
synchronized states in which spontaneous activity is dominated
by slow fluctuations between up and down states that are con-
certed across a population. These fluctuations between up and
down states are evident in intracellular measurements as transi-
tions between depolarized and hyperpolarized membrane poten-
tials, and in extracellular measurements as transitions between
periods of vigorous population-wide spiking and silence, or
strong low-frequency LFP fluctuations. At the other end of the
continuum are desynchronized states in which the concerted
fluctuations between up and down states are suppressed and
neighboring cells spike independently.

To study population coding in synchronized and desynchro-
nized cortical states, we compared activity recorded with a mul-
titetrode array in gerbil A1 (Fig. 1A) under several different
anesthetics. The cortical states imposed by anesthesia may, of
course, differ from those that occur naturally. However, compar-
isons of spontaneous and evoked activity in rodent A1 have re-
vealed similar dynamical properties in the synchronized and
desynchronized states observed under anesthesia and those in
awake animals (Luczak et al., 2007, 2013; Bermudez Contreras et
al., 2013). Furthermore, the use of anesthesia enabled us to con-
trol synchronization and desynchronization without additional
influences related to the particular task in which an animal is
engaged, thus allowing us to perform a general comparison of A1
responses in the presence or absence of intrinsically generated up
and down states.

To achieve a stable and consistent synchronized or desynchro-
nized state throughout an entire experiment, we recorded activity
under either KX or FMM. The up and down states that are typical
of a synchronized cortical state were always evident in the popu-
lations recorded under KX, but were largely absent in those re-
corded under FMM. Short segments of the spontaneous LFP,
single-unit spiking, and multiunit activity (defined as the
summed spiking of all of the individual cells in the population)
for two example populations are shown in Figure 1B. To assess
the cortical state for each population, we measured the strength
of up and down states based on: (1) the low-frequency power in
the LFP, (2) the degree to which the spiking of individual cells was
similar to the MUA, and (3) the excess silence in the population
spiking, i.e., the fraction of time during which the population was
silent relative to that expected for a population of cells with the
same mean rates that were spiking independently.

The up and down state dynamics that are indicative of a syn-
chronized cortical state were strong under KX and weak under
FMM. As shown in Figure 1C, populations recorded under KX
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(n 
 7) had more low-frequency LFP power and more strongly
correlated spiking than those recorded under FMM (n 
 8).
Populations recorded under KX also exhibited more excess si-
lence than those recorded under FMM, as shown in Figure 1D.
For populations recorded under KX, the distribution of MUA
spike rates during spontaneous activity changed dramatically af-
ter randomizing the spike times of each cell, indicating that peri-
ods of spiking and silence were concerted across the populations,
whereas the same manipulation had a much weaker impact on
the distributions for populations recorded under FMM (the dis-
tributions for two example populations before and after random-
izing the spike times for each cell are shown in Fig. 1E). The
suppression of up and down states under FMM was accompanied
by an overall decrease in the level of spontaneous spiking (mean
rates: 4.3 spikes/s for KX, n 
 284 cells, 1.3 spikes/s for FMM, n 

245 cells).

The majority of our analysis (all figures but the last) is based
on populations recorded in the low-frequency region of A1 under
KX and FMM that exhibited stable synchronized and desynchro-
nized states, respectively. These populations were well matched
in their preferred frequencies; Figure 1F shows the distribution of
center frequencies (CFs) for the MUA on each tetrode under KX
(n 
 56, 7 populations each with 8 tetrodes) and FMM (n 
 64,
8 populations each with 8 tetrodes). To confirm that the state-
dependent effects that we observed when comparing different
populations were also evident when comparing synchronized
and desynchronized states within the same population, we also
recorded from three populations (131 cells in total) under ure-
thane in which A1 exhibited spontaneous fluctuations between
synchronized and desynchronized states (Curto et al., 2009; Mar-
guet and Harris, 2011; Okun et al., 2012; Bermudez Contreras et
al., 2013). Our analysis of these populations is summarized in the
final figure.

The impact of cortical state on responses to pure tones
We began by examining A1 responses to tones. Although, on
average, the spike rates evoked by tones were higher than spon-
taneous rates in both states (median increase: 0.68 spikes/s for
synchronized, n 
 251, 1.24 spikes/s for desynchronized, n 

224), the relative increase was much higher in the desynchronized
state, as illustrated in the FRAs for two example populations
shown in Figure 2A. For tones presented at 56 dB SPL, we mea-
sured the fraction of cells in each population that responded
significantly above their spontaneous rate to the best frequency
for that population (i.e., the frequency that evoked a significant
response from the largest fraction of cells), as well as the fraction
of cells that responded significantly to at least one of the frequen-
cies tested. As shown in Figure 2B, only a small fraction of cells in
synchronized A1 responded significantly above their spontane-
ous rate (median values: 13% for best tone, 18% for any tone, n 

6 populations), but in desynchronized A1, nearly all cells re-
sponded significantly in some populations (median values: 83%
for best tone, 93% for any tone, n 
 8 populations). These dif-
ferences in population medians between synchronized and de-
synchronized A1, as well as all of the other differences in
population medians between synchronized and desynchronized
A1 reported in Figures 1 through 6, were significant with p �
0.001 (Wilcoxon rank-sum test).

It is possible that increased responsiveness in desynchronized
A1 could be accompanied by a loss of selectivity, but this was not
the case. As shown in Figure 2C, frequency selectivity (width of
spike rate tuning at half max for tones at 56 dB SPL) was much
sharper in desynchronized A1 (median value: 1 octave, n 
 224

cells) than in synchronized A1 (median value: 2.4 octaves, n 

251 cells). There were also state-dependent differences in the
temporal profiles of the responses to tones. As shown in Figure
2D, the MUA for populations in both synchronized and desyn-
chronized A1 reached a peak �30 ms after tone onset. However,
whereas the MUA decreased gradually after this initial peak in
synchronized A1, the MUA in desynchronized A1 reached a sec-
ond peak with a latency of �70 ms (note that this second peak
does not correspond to an offset response, as it precedes the end
of the tone). The second peak in the spike rates of desynchronized
A1 populations was not caused by a subset of cells with long
latencies; as shown in Figure 2E, the distributions of the onset
latencies for all cells that responded significantly to tones in syn-
chronized A1 (n 
 41) and desynchronized A1 (n 
 223) had a
single dominant mode at �30 ms (median values: 26 ms for
synchronized, 33 ms for desynchronized).

The impact of cortical state on responses to
frequency-modulated tones
For some populations, we also examined the effects of cortical
state on responses to FM tones (n 
 3 populations for a total of
108 cells in synchronized A1, n 
 5 populations for a total of 175
cells in desynchronized A1). The responses of example cells from
synchronized and desynchronized A1 to FM tones are shown in
Figure 3A. We began by measuring the selectivity of each cell for
the direction and speed of FMs. We quantified selectivity for
direction (or speed) based on the maximum and minimum spike
rates observed across all directions (or speeds) as (max rate �
min rate)/(max rate � min rate). Cells in synchronized A1 were
generally either nonresponsive or weakly selective (median selec-
tivity index: 0.14 for direction, 0.36 for speed), whereas cells in
desynchronized A1 were highly selective for both speed and di-
rection (median selectivity index: 0.7 for direction, 0.91 for
speed), as shown in Figure 3B.

We also assessed the fidelity of each cell’s response to FMs by
measuring the precision and reliability of spiking across repeated
trials. We found that responses in synchronized A1 were highly
variable, whereas responses in desynchronized A1 contained
temporally precise firing events that were reliable across trials. To
quantify the temporal precision of the responses, we measured
the timescale at which spike timing needs to be considered to
capture the information in single spikes (i.e., the information in
the PSTH) from each cell. We defined the precision for each cell
by jittering the spike times with successively larger amounts of
noise until the information in the responses decreased to 95% of
its original value (Garcia-Lazaro et al., 2013). As shown in Figure
3C, the median precision was 63 ms in synchronized A1 and 24
ms in desynchronized A1.

To quantify the reliability of the responses across trials, we
measured the SNR defined as the ratio of unbiased estimates of
the signal (repeatable) and noise (not repeatable) response power
(Sahani and Linden, 2003), with responses represented as binary
vectors with 2 ms bins. As shown in Figure 3D, cells in desynchro-
nized A1 were, on average, nearly an order of magnitude more
reliable than those in synchronized A1 (median SNR: 0.004 for
synchronized, 0.03 for desynchronized). Finally, to quantify the
overall fidelity of A1 responses in a manner that combines preci-
sion and reliability, we measured the throughput and the effi-
ciency of the single-spike information for each cell. The
information throughput (bits/s) in desynchronized A1 cells was
�2.5 times higher than that in synchronized A1 cells (median
values: 1.3 bits/s for synchronized, 3.3 bits/s for desynchronized)
and the information efficiency (bits/spike) in desynchronized
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A1 cells was eight times higher than that
in synchronized A1 cells (median values:
0.4 bits/spike for synchronized, 3.2 bits/
spike for desynchronized), as shown in
Figure 3E.

The impact of cortical state on the
temporal precision and reliability of
responses to speech
We next examined the fidelity of re-
sponses to speech in synchronized and de-
synchronized A1. The responses of two
example cells from synchronized and de-
synchronized A1 to a short segment of
speech are shown in Figure 4A. As with
responses to FMs, we found that re-
sponses to speech in synchronized A1
were highly variable, while responses to
speech in desynchronized A1 were precise
and reliable. As shown in Figure 4B, the
median precision in responses to speech
was 31 ms in synchronized A1 (n 
 245
cells) and 13 ms in desynchronized A1
(n 
 284 cells). Note that, for both syn-
chronized and desynchronized A1, these
values are approximately half as large as
those measured for responses to FMs. Re-
sponses to speech for cells in desynchro-
nized A1 were, on average, six times more
reliable than those in synchronized A1
(median SNR: 0.005 for synchronized,
0.029 for desynchronized), with the SNR
of the most reliable cells in desynchro-
nized A1 approaching values typically
observed for responses to speech in sub-
cortical areas (Horvath and Lesica, 2011),
as shown in Figure 4C. There were also
strong state dependencies in the through-
put and the efficiency of the single-spike
information in responses to speech: the
information throughput (bits/s) in desyn-
chronized A1 cells was three times higher
than that in synchronized A1 cells (me-
dian values: 1.2 bits/s for synchronized,
3.8 bits/s for desynchronized) and the in-
formation efficiency (bits/spike) in desyn-
chronized A1 cells was five times higher
than that in synchronized A1 cells (me-
dian values: 0.5 bits/spike for synchro-
nized, 2.6 bits/spike for desynchronized),
as shown in Figure 4D.

The impact of cortical state on the
similarity of spike patterns evoked by
different speech tokens
The above results demonstrate that indi-
vidual cells in desynchronized A1 respond
reliably to repeated presentations of the
same sound. However, the representation
in A1 depends not only on the fidelity of
individual cells, but also on the extent to
which different sounds evoke different
spike patterns across the population. Pre-

Figure 3. The impact of cortical state on responses to frequency-modulated tones. A, Responses of example cells from
synchronized and desynchronized A1 to repeated presentations of FM tones. Top row, The spectrogram of the sounds;
bottom rows, raster plots for individual cells. Each row in the raster plots shows the spike times for one trial. B–E,
Distributions of the direction selectivity index, speed selectivity index, temporal precision, reliability, information through-
put, and information efficiency of responses of individual cells in synchronized (green) and desynchronized (purple) A1 to
FM tones, plotted as in Figure 2C.
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vious studies in rodent A1 have shown that responses can be
highly constrained, with different sounds evoking spike patterns
that are remarkably similar (Luczak et al., 2009, 2013; Bathellier
et al., 2012). We examined the similarity of responses evoked by
different segments of speech and found that, although there was a
high degree of similarity between responses in synchronized A1,
responses in desynchronized A1 were much more diverse.

We represented population spike patterns as binary matrices
(Fig. 5A) and measured the average similarity between both the
single-trial and trial-averaged patterns evoked by different speech
tokens. The spike patterns in synchronized A1 were much more
similar across tokens than those in desynchronized A1, both for
the average patterns evoked by each token across trials and for the
patterns evoked on single trials. As shown in Figure 5B, the me-
dian correlation between average patterns for each pair of tokens
was 0.51 for synchronized A1 (7 populations each with between 1
and 3 sets of 7 different tokens for total n 
 12) and 0.19 for
desynchronized A1 (8 populations for total n 
 14). This result
indicates a qualitative difference between synchronized and de-
synchronized A1: if the intrinsic dynamics in synchronized A1
simply added noise to the responses observed in desynchronized
A1, the similarity between the trial-averaged patterns in the two
states would be the same. The difference between synchronized
and desynchronized A1 was also evident when comparing the
spike patterns evoked on single trials. As shown in Figure 5B, the
median fractional increase in the average distance between

single-trial patterns for each pair of tokens relative to the average
distance between patterns for the same token was 4% for syn-
chronized A1 and 20% for desynchronized A1 (note that al-
though the distances may seem small even for desynchronized
A1, they are sufficient to support nearly perfect classification in
the high dimensional response space, as shown below).

To examine the similarity of spike patterns in more detail, we
followed the approaches of previous studies for comparing pat-
terns based on their spatial and temporal structure (Luczak et al.,
2009, 2013). We represented the spatial structure of spiking for
each token by the set of correlations between the spike patterns of
each pair of cells in the population (i.e., the correlations between
the rows of the binary spike pattern matrices). Figure 5C shows
the set of pairwise correlations for two example populations for
two different speech tokens (each square in each image shows the
correlation between one pair of cells for a given token). In syn-
chronized A1, the spatial structure of spiking was largely pre-
served across tokens, while in desynchronized A1, the spatial
structure varied from token to token. To quantify the degree to
which the spatial structure of spiking for each population was
similar across tokens, we measured the correlation between the
spatial structures for each pair of tokens and averaged across all
pairs of tokens. As shown in Figure 5D, the spatial structure of
spiking in synchronized A1 was twice as similar across tokens as
that in desynchronized A1 (median values: 0.83 for synchronized,
0.42 for desynchronized).

Figure 4. The impact of cortical state on the temporal precision and reliability of responses to speech. A, Responses of example cells from synchronized and desynchronized A1 to repeated
presentations of speech. Top row, The spectrogram of the sound, the bottom rows show raster plots for individual cells. Each row in the raster plots shows the spike times for one trial. B–D,
Distributions of the temporal precision, reliability, information throughput, and information efficiency of responses of individual cells in synchronized (green) and desynchronized (purple) A1 to
speech, plotted as in Figure 2C.
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Figure 5. The impact of cortical state on the similarity of spike patterns evoked by different speech tokens. A, The responses of each population to each trial of each token were represented as
binary matrices with rows corresponding to cells and columns corresponding to 10 ms time bins. B, A scatter plot showing the similarity of the spike patterns across speech tokens for each
synchronized (green) and desynchronized (purple) population for both single-trial responses and responses averaged across trials. For trial average similarity, values are the average correlation
between the average spike patterns evoked by each pair of tokens. For single-trial similarity, values are the average fractional increase in the distance between spike patterns evoked by each pair
of tokens relative to the average distance between patterns evoked by the same token. For those populations for which responses were recorded for more than one set of tokens, multiple symbols
are shown (circles for token set 1, squares for token set 2, and triangles for token set 3). The median values (with each token set for each population treated as a separate measurement) are indicated
by the arrows. C, The pairwise correlations for the responses of example synchronized and desynchronized A1 populations to different speech tokens. Each square in each image shows the correlation
for one pair of cells. The images in the top row show the correlations for the first token and the images in the bottom row show the correlations for the second token. (Figure legend continues.)
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We also examined the degree to which the temporal order of
spiking for each population was similar across tokens. We repre-
sented the temporal order of spiking for each token by the set of
latencies measured from the center of mass of the correlation
function between the spiking of each cell in the population and
the MUA (i.e., the correlation function between each row of the
binary spike pattern matrices and the sum of all rows). Figure 5E
shows the set of correlation functions for two example popula-
tions for two different speech tokens (each row in each image
shows the correlation function between one cell and the MUA).
In synchronized A1, the temporal order of spiking was largely
preserved across tokens, while in desynchronized A1, the tempo-
ral order varied from token to token (for the images in Fig. 5E, the
cells in each population were ordered according to their latency
for the first token and plotted in the same order for the second
token). To quantify the degree to which the temporal order of
spiking for each population was similar across tokens, we mea-
sured the correlation between the latencies for each pair of tokens
and averaged across all pairs of tokens. As shown in Figure 5D, the
temporal order of spiking was much more similar across tokens
in synchronized A1 than in desynchronized A1 (median values:
0.7 for synchronized, 0.43 for desynchronized).

The impact of cortical state on signal correlations, noise
correlations, and population decoding
The above results demonstrate that the degree of similarity in the
spike patterns evoked by different sounds differs strongly be-
tween synchronized and desynchronized A1. However, the extent
to which A1 can support discrimination of different sounds de-
pends not only on the range of evoked patterns, but also on the
structure of the trial-to-trial variability in these patterns across
the population. For each population, we separated the correla-
tions in responses to speech into signal correlations, the correla-
tions in the fraction of the response that was repeatable across
trials, and noise correlations, the correlations in the trial-to-trial
variability. Figure 6A shows the distributions of pairwise correla-
tions in responses to speech for each population. Although there
was a significant difference in the signal correlations in synchro-
nized and desynchronized A1 (median values: 0.012 for synchro-
nized, n 
 6451 pairs, and 0.017 for desynchronized, n 
 6101
pairs), the dependence of noise correlations on cortical state was
much more striking; whereas noise correlations in synchronized
A1 were strong (median value: 0.07), those in desynchronized A1
were extremely weak (median value: 0.002). These results were
consistent across a wide range of time scales (Fig. 6B). As shown
in Figure 6C, there was also a positive dependency between signal
and noise correlations in both states (though this relationship
was much stronger in synchronized A1), indicating that cells that

preferred similar acoustic features also tended to have a higher
degree of shared variability.

To quantify how the differences between spike patterns in
synchronized and desynchronized A1 impact the representation
of speech, we trained a support vector machine to predict which
speech token evoked a given single-trial response. As shown in
Figure 6D, decoding of population spike patterns from desyn-
chronized A1 was highly accurate (median performance: 99%
correct), while decoding of patterns from synchronized A1 was
substantially worse (median performance: 62% correct). Decod-
ing of synchronized A1 responses was also impacted by noise
correlations; when noise correlations were removed by shuffling
the trial order before training the classifier and decoding, median
performance increased from 62% correct to 82% correct (p �
0.001, Wilcoxon signed rank test).

Spike patterns evoked by different speech tokens in
synchronized A1 are similar and have strong noise
correlations even within up states
It has been hypothesized that up states in synchronized cortex
may be equivalent to brief periods of desynchronization
(Destexhe et al., 2007; Castro-Alamancos, 2009). This implies
that the differences in the spike patterns in synchronized and
desynchronized A1 that we have observed can be accounted for
by the global dynamics of up and down states in synchronized A1,
and that if only the activity within up states is considered, the
differences between synchronized and desynchronized A1 should
be small. We found, however, that restricting the analysis of syn-
chronized A1 to activity within up states had little impact on our
results.

Figure 7A shows the probability of being in an up state for an
example population from synchronized A1 during repeated pre-
sentations of a short segment of speech. The timing of up and
down states in this population was strongly modulated by the
sound, and this effect was consistent across all of the populations
that we studied in synchronized A1; the reliability of the timing of
up and down states across trials measured as the SNR for binary
vectors specifying whether the population was in an up or down
state in 10 ms time bins was 0.17 � 0.09 (7 populations each
between 1 and 3 different speech segments for total n 
 12).
Figure 7B shows the MUA for an example population from syn-
chronized A1 across repeated presentations of two different
speech tokens. Each row of the image shows the MUA for one
trial, and the trials are ordered by the time of the earliest activity.
There were very few trials in which the tokens evoked no response
(median value: 4% of trials across 7 populations each with be-
tween 12 and 18 different tokens for total n 
 96). In most trials,
either the response to the onset of the token occurred during an
ongoing up state (median value: 43% of trials) or the onset of the
token triggered an up state (median value: 50% of trials).

We repeated the analyses of population spike patterns de-
scribed in the previous section after separating trials in which the
response to a token occurred during an ongoing up state from
those in which the token triggered an up state (see Materials and
Methods for a description of how trials were classified). Whether
considering the similarity in the spike patterns evoked by differ-
ent sounds (Fig. 7C), noise correlations (Fig. 7D), or decoding
performance (Fig. 7E), the differences between different classes of
responses in synchronized A1 were small, and the differences
between synchronized and desynchronized A1 were large. Sur-
prisingly, although the differences between the different classes of
responses in synchronized A1 were small, the responses on trials
in which an up state was triggered were more like desynchronized

4

(Figure legend continued.) The similarity of the correlations for token 1 and token 2 are shown.
Similarity was measured as the correlation between the set of pairwise correlations for each
token. D, A scatter plot showing the similarity of the spatial pattern and temporal order of
spiking across speech tokens for each synchronized (green) and desynchronized (purple) pop-
ulation, plotted as in B. E, The correlation function between the spiking of individual cells and
the multiunit activity for the responses of example synchronized and desynchronized A1 pop-
ulations to different speech tokens. Each row in each image shows the correlation function for
one cell. For plotting, the correlation functions for all cells were scaled to have the same maxi-
mum and minimum values, and the cells were ordered according to their latency with respect to
the MUA for the first token. The latency was measured as the center of mass of the correlation
function. The ordering of the images was the same for the first and second tokens. The similarity
of the latencies for token 1 and token 2 is shown. Similarity was measured as the correlation
between the set of latencies for each token.
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responses (i.e., had more diverse spike
patterns, weaker noise correlations, and
allowed for better decoding performance)
than those that occurred during ongoing
up states (see Fig. 7 for population medi-
ans and significance for Wilcoxon signed
rank tests).

Differences between synchronized and
desynchronized states in the
same population
All of the above results are based on com-
paring synchronized and desynchronized
states in different populations. To con-
firm that the same state-dependent effects
on population coding were also evident
when comparing synchronized and desyn-
chronized states within the same popula-
tion, we recorded from three populations
under urethane in which A1 exhibited
spontaneous fluctuations between syn-
chronized and desynchronized states
(Curto et al., 2009; Marguet and Harris,
2011; Okun et al., 2012; Bermudez Con-
treras et al., 2013). Figure 8A shows the
spontaneous LFP and MUA for an exam-
ple population over a period of �1 h,
along with the responses to speech for an
example cell recorded during the same pe-
riod (each 10 s period of silence for mea-
surement of spontaneous activity was
followed by 40 s of speech). Measuring the
strength of up and down states in popula-
tions recorded under urethane based on
the same measures used to assess the cor-
tical states observed under KX and FMM
in Figure 1 (low-frequency LFP power,
correlation between the spiking of indi-
vidual cells and the MUA, and excess si-
lence) revealed clear transitions between
synchronized and desynchronized states.
As illustrated in Figure 8B for the same
example population, relatively strong
low-frequency LFPs were accompanied by
highly correlated spiking and a large de-
gree of excess silence, whereas periods of
relatively weak low-frequency LFPs were
accompanied by weakly correlated spik-
ing and less excess silence.

For all populations recorded under
urethane, we classified the cortical state
based on the average correlation between
the spiking of individual cells and the
MUA in spontaneous activity; periods
during which this value was �0.35 were
classified as synchronized, whereas periods
during which this value was �0.2 were clas-
sified as desynchronized. As shown in
Figures 8C,D, the state-dependent differ-
ences that we observed in the LFP, MUA,
and single-unit spiking properties under
urethane were consistent across the three
populations that we studied. As with the

Figure 6. The impact of cortical state on signal correlations, noise correlations and population decoding. A, Box-and-whisker
plots showing the distributions of pairwise signal and noise correlations for each synchronized (green) and desynchronized
(purple) population. The box spans the 25 th to 75 th percentiles, and the whiskers span the 5 th to 95 th percentiles. For those
populations for which responses were recorded for more than one segment of speech, multiple distributions are shown (darkest
color for token set 1, middle color for token set 2, and lightest color for token set 3). The median values for all pairs across all
populations are indicated by the arrows. B, The median pairwise signal and noise correlations in responses to speech across
different time scales for each synchronized (green) and desynchronized (purple) population. The response of each cell to each trial
was represented as a binary vector with a range of time bins as indicated on the horizontal axis. C, A scatter plot showing the signal
and noise correlations for all pairs of cells that we studied in synchronized (green) and desynchronized (purple) A1. The correlation
coefficients between the signal and noise correlations in each state are indicated. D, A scatter plot showing the performance of a
support vector machine in decoding the responses of each synchronized (green) and desynchronized (purple) population to
different speech tokens with and without noise correlations, plotted as in Figure 5B.
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populations recorded under KX and FMM, there were also state-
dependent differences in spontaneous spike rates under urethane;
however, whereas spike rates in desynchronized states under FMM
were lower than those in synchronized states under KX (Fig. 1D),
spike rates in desynchronized states were higher than those in syn-
chronized states under urethane (Fig. 8D).

To examine the effects of cortical state on the population cod-
ing of speech under urethane, we grouped responses to speech
according to whether the cortex was classified as synchronized or

desynchronized during the preceding period of spontaneous ac-
tivity and repeated the analyses of population spike patterns de-
scribed above. With respect to the similarity in the spike patterns
evoked by different sounds (Fig. 8E), noise correlations (Fig. 8F),
and decoding performance (Fig. 8G), the differences between
responses in synchronized and desynchronized states for the
three populations recorded under urethane mirrored those that
we observed when comparing states across different populations
under KX and FMM above.

Figure 7. Spike patterns evoked by different speech tokens in synchronized A1 are similar and have strong noise correlations even within up states. A, The probability of being in an
up state in 10 ms time bins for an example population from synchronized A1 during repeated presentations of a short segment of speech. The dark line shows the probabilities for the
actual responses. The light line shows the probability computed after shuffling the order of time bins on each trial and indicates the overall probability of being in an up state. The
thickness of lines indicates 95% confidence intervals. B, The MUA for an example population from synchronized A1 across repeated presentations of two different speech tokens. Each row
of the image shows the MUA for one trial, and the trials are ordered by the time of the earliest activity. Trials were separated into those with no response, those in which the response
occurred during an ongoing up state, and those in which the token triggered an up state. C, Plots showing the similarity of the spike patterns across speech tokens for each synchronized
(green) and desynchronized (purple) population for both responses averaged across trials (left) and single-trial responses (right). For trial average similarity, values are the average
correlation between the average spike patterns evoked by each pair of tokens. For single-trial similarity, values are the average fractional increase in the distance between spike patterns
evoked by each pair of tokens relative to the average distance between patterns evoked by the same token. For those populations for which responses were recorded for more than one
set of tokens, multiple symbols are shown (darkest color for token set 1, middle color for token set 2, and lightest color for token set 3). The symbols indicate the median value for each
population across all pairs of tokens. The median values across all populations are noted on the figure (with each token set for each population treated as a separate measurement).
Responses from synchronized A1 were analyzed for all trials (All), trials in which the response occurred during an ongoing up state (ON), and those in which the token triggered an up state
(UT). The p value for a Wilcoxon signed rank test comparing the ON and UT medians is indicated. D, E, Plots showing the pairwise noise correlations and the performance of a support vector
machine in decoding responses, plotted as in C.

Pachitariu et al. • State-Dependent Population Coding in A1 J. Neurosci., February 4, 2015 • 35(5):2058 –2073 • 2069



Figure 8. Differences between synchronized and desynchronized states in the same population. A, Left and middle, The spontaneous LFP and MUA for an example A1 population under urethane
over a period of �1 h. Each 10 s period of silence for measuring spontaneous activity was followed by 40 s of speech. The MUA was defined as the sum of the activity of all of the individual cells in
the population. Right, The responses of an example cell to repeated presentations of speech in synchronized and desynchronized states. Each row in the raster plots shows the spike times for one trial.
The periods during which the cortex was classified as synchronized and desynchronized are indicated by the shading. Only every tenth trial is shown. B, Middle, The median value of correlation
between the spiking of each cell in the population and the MUA for each 10 s trial of spontaneous activity shown in A. The activity of each cell was represented as a spike count vector with 50 ms bins.
During periods when the value was �0.2, the cortex was classified as desynchronized, and during periods when the value was �0.35, the cortex was classified as synchronized. Left and right, The
low-frequency LFP power (1–20 Hz) and the excess silence in the spontaneous activity during the same period. C, A scatter plot showing the low-frequency LFP power (1–20 Hz) and average
correlation between the MUA and spiking of each single unit for spontaneous activity for three populations recorded under urethane during periods in which the (Figure legend continues.)
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Discussion
We have shown that responses to tones and speech in A1 depend
strongly on cortical state. We found that responses to FM tones
and speech in desynchronized A1 were temporally precise and
reliable across trials, with median precision that was several times
higher than in synchronized A1. Whereas different speech tokens
evoked similar spike patterns in synchronized A1, we found that
responses in desynchronized A1 were much more diverse, with
similarity in both the spatial structure and the temporal order of
spiking across tokens that was approximately half that in syn-
chronized A1. This diversity of spike patterns, together with ex-
tremely weak noise correlations, allowed us to decode responses
to different speech tokens from desynchronized A1 with nearly
perfect performance. These state-dependent differences in the
population coding of speech were evident in comparisons both
across different populations, as well between synchronized and
desynchronized states within the same populations.

Our finding that gerbil A1 has the capacity to represent sounds
with high fidelity in the desynchronized state is consistent with
behavioral studies in rodents that have demonstrated the essen-
tial role of A1 in auditory processing (Wetzel et al., 1998; Rybalko
et al., 2006; Cooke et al., 2007; Porter et al., 2011) and learning
(Bao et al., 2004; Reed et al., 2011; Aizenberg and Geffen, 2013;
Banerjee and Liu, 2013). Several previous studies of synchronized
and desynchronized rodent A1 have reported differences that are
qualitatively consistent with our results. In rats anesthetized with
urethane, the change from synchronized to desynchronized
states was accompanied by a decrease in the trial-to-trial variabil-
ity of A1 responses to clicks (Curto et al., 2009) and amplitude-
modulated noise (Marguet and Harris, 2011), as well as a
decrease in noise correlations (Renart et al., 2010). A study in
awake rats found that the temporal order of population spiking
was conserved across synchronized and desynchronized states
(Luczak et al., 2013), which may seem inconsistent with our find-
ing that the temporal order of spiking was similar across different
sounds in synchronized A1, but not in desynchronized A1. How-
ever, the comparison by Luczak et al. (2013) was based on the
average temporal order across all sounds tested in the two states,
rather than on the order for individual sounds as in our study. We
also observed a consistent temporal order in desynchronized A1
when averaging across two separate 5 min segments on ongoing
speech (data not shown), but our results show that the intrinsic
factors that impose this consistency across sounds provide only a
weak constraint on the temporal order in responses to any par-
ticular sound.

Another study in awake rats found that A1 responses in en-
gaged animals were suppressed relative to those in passive ani-
mals (Otazu et al., 2009). Although this study did not explicitly
measure cortical state, the results of previous studies suggest that

engaged and passive behavioral conditions in rodents are typi-
cally associated with desynchronized and synchronized states,
respectively (Harris and Thiele, 2011). Our data are consistent
with the results of Otazu et al. (2009); the average spike rates in
responses to speech were lower in desynchronized A1 than in
synchronized A1 (median values: 5.2 spikes/s for synchronized,
n 
 245, 3.3 spikes/s for desynchronized, n 
 284).

Our results differ from those of previous studies with respect
to differences between activity in desynchronized cortex and ac-
tivity during up states in synchronized cortex. Previous studies
have shown that membrane potential dynamics during up states
in anesthetized animals are similar to those during prolonged
periods of desynchronization in awake animals, suggesting that
up states may be equivalent to brief periods of desynchronization
(Destexhe et al., 2007; Castro-Alamancos, 2009). Our results ar-
gue against this hypothesis, at least at the level of population spike
patterns, as restricting our analysis of synchronized A1 to activity
within up states had little impact on our results. Our finding that
noise correlations in synchronized A1 persist even when only up
states are considered also differ from those of recent studies that
have shown that noise correlations within up states in synchro-
nized cortex are weak (Renart et al., 2010).

Such discrepancies suggest that there may be important dif-
ferences in the synchronized and desynchronized states observed
under different anesthesias and in different behavioral states. Al-
though many aspects of the synchronized and desynchronized
states that we observed under different anesthetics were similar,
there were also noticeable differences. For example, whereas
spontaneous spike rates in desynchronized states under FMM
were much lower than those in synchronized states under KX, the
opposite was true under urethane, where spike rates in desyn-
chronized states were higher than those in synchronized states for
82% of cells. Understanding the relationships between the differ-
ent synchronized and desynchronized states that have been ob-
served in studies of behaving animals is also difficult. For
example, although studies across different sensory modalities are
generally consistent in suggesting that transitions from passive to
active behavioral states are associated with a suppression of up
and down states, this desynchronization can be accompanied by
either and increase or decrease in overall activity depending on
context (Castro-Alamancos, 2004b; Niell and Stryker, 2010; Sch-
neider et al., 2014; Zhou et al., 2014). One recent study linking
different forms of desynchronization to the action of different
neuromodulator pathways may provide a potential explanation
for these results: Castro-Alamancos and Gulati (2014) found that
cholinergic stimulation in S1 produced desynchronization with
increased activity, whereas noradrenergic stimulation produced
desynchronization with decreased activity. However, even the
notion that active behavioral states are associated with desyn-
chronized cortical states requires further refinement; recent stud-
ies in S1 and V1 (Sachidhanandam et al., 2013; Tan et al., 2014)
found that the cortex could be in a synchronized state even when
animals were performing a task (and, in the case of V1, switched
to a desynchronized state only after the onset of visual stimula-
tion). To determine how cortical states observed under different
anesthesias and in different behavioral states are related, further
studies involving direct comparisons of population activity un-
der different conditions are needed.

Our results add to a growing body of evidence demonstrating
the importance of cortical state for sensory processing (Harris
and Thiele, 2011). Early evidence suggested that the interactions
between spontaneous and evoked activity were additive (Arieli et
al., 1996; Azouz and Gray, 2003; Ringach, 2009), but recent stud-

4

(Figure legend continued.) cortex was classified as synchronized (green) or desynchronized (pur-
ple). The corresponding values for each population are connected by lines. D, A scatter plot
showing the excess silence and average mean spike rates for spontaneous activity for three
populations recorded under urethane, plotted as in C. E, Plots showing the similarity of the spike
patterns across speech tokens for each of the three populations recorded under urethane in
synchronized and desynchronized states. For trial average similarity, values are the average
correlation between the average spike patterns evoked by each pair of tokens. For single-trial
similarity, values are the average fractional increase in the distance between spike patterns
evoked by each pair of tokens relative to the average distance between patterns evoked by the
same token. The median values for each population across all pairs of tokens are shown. F, G,
Plots showing the pairwise noise correlations and the performance of a support vector machine
in decoding responses, plotted as in E.
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ies have shown that these interactions can be much more com-
plex, with sensory inputs causing transitions between up and
down states and intrinsic dynamics placing strong constraints on
activity patterns (MacLean et al., 2005; Hasenstaub et al., 2007;
Rigas and Castro-Alamancos, 2007; Curto et al., 2009; Luczak et
al., 2009, 2013; Bathellier et al., 2012). The ability of stimuli to
trigger an up state may facilitate the detection of stimulus onsets;
indeed, in our sample of populations in synchronized A1, trials in
which the onset of a speech token triggered an up state contained
an average of 18% more spikes than those in which responses
occurred during an ongoing upstate (p � 0.001, Wilcoxon signed
rank test). Recent studies have also provided evidence that net-
work dynamics can aid in the processing of ongoing stimuli. For
example, the entrainment of slow rhythms in A1 has been shown
to facilitate the processing of complex sound streams (Kayser et
al., 2009; Giraud and Poeppel, 2012; Lakatos et al., 2013; Zion
Golumbic et al., 2013) and our finding that the dynamics of up
and down states can be entrained by speech are consistent with
these results. Thus, rather than simply reflecting a general sup-
pression of network dynamics, the high fidelity representation of
sounds that we observed in desynchronized A1 may result from
network dynamics being strongly driven by sound rather than by
intrinsic sources. Elucidating the role of network dynamics in
desynchronized cortex and characterizing how they interact with
sensory inputs are challenges for future studies.
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