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Abstract
As multi-electrode and imaging technology begin to provide us with simultaneous recordings
of large neuronal populations, new methods for modelling such data must also be developed.
We present a model of responses to repeated trials of a sensory stimulus based on thresholded
Gaussian processes that allows for analysis and modelling of variability and covariability of
population spike trains across multiple time scales. The model framework can be used to
specify the values of many different variability measures including spike timing precision
across trials, coefficient of variation of the interspike interval distribution, and Fano factor of
spike counts for individual neurons, as well as signal and noise correlations and correlations
of spike counts across multiple neurons. Using both simulated data and data from different
stages of the mammalian auditory pathway, we demonstrate the range of possible
independent manipulations of different variability measures, and explore how this range
depends on the sensory stimulus. The model provides a powerful framework for the study of
experimental and surrogate data and for analyzing dependencies between different statistical
properties of neuronal populations.
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Introduction

In sensory systems repeated presentations of identical stimuli can evoke different

spike patterns, with variability typically increasing from the periphery to more

central brain areas (Kara et al. 2000). The importance of considering variability and

covariability (or correlation) of spiking on different time scales has been stressed in a

number of studies (Vaadia et al. 1995; Ratnam and Nelson 2000; Bair et al. 2001;

Smith and Kohn 2008). For single neurons, the impact of variable spiking on

stimulus coding has been studied on several time scales, from millisecond spike time

jitter and phase-locking in early sensory pathways, to the scale of inter-spike

intervals (ISIs) and spike counts across seconds in cortical areas (Softky and Koch

1993; Shadlen and Newsome 1998). Whether such variability is beneficial or

detrimental for coding depends on the assumptions about the nature of the neural

code and its significant parameters (Mainen and Sejnowski 1995; Schneidman et al.

1998; Manwani et al. 2002). When neuronal populations are considered, the same

question arises with respect to the covariability of spiking of individual neurons

(Zohary et al. 1994; Abbott and Dayan 1999; Romo et al. 2003; Schneidman et al.

2003; Latham and Nirenberg 2005; Averbeck et al. 2006). For populations of

neurons, both spike synchrony on fine time scales and correlations in spike counts

across longer time scales can result in synergistic or redundant coding depending,

for example, on the similarity of the tuning curves of the neurons in the population

(Zohary et al. 1994; Dan et al. 1998; Puchalla et al. 2005; Smith and Kohn 2008).

Taking this background into consideration, it is clear that tools enabling the

analysis and modelling of the different types of variability in population spike trains

should be developed. Previous research has shown that certain types of variability

and covariability can be directly related to the spike train auto- and crosscorrelation

functions (Bair et al. 2001; Nawrot 2010; Tchumatchenko et al. 2010). While

existing models for the analysis of population spike trains allow specification of auto-

and crosscorrelation functions (Krumin and Shoham 2009; Macke et al. 2009;

Gutnisky and Josić 2010; Lyamzin et al. 2010) the parameters of these models have

not yet been explicitly linked to the different measures of variability and covariability

described above. Modelling spike trains with specified variability and covariability

across multiple time scales, each of which could be independently manipulated,

would provide a systematic way to study their impact on coding.

In this paper, we present further analysis of a model that we previously developed

to capture instantaneous response properties of neuronal populations (Lyamzin

et al. 2010). We show how the model can capture variability and covariability across

a range of time scales, including signal to noise ratio, coefficient of variation (CV) of

the ISI distribution, and Fano factor of spike counts for single neurons, and spike

synchrony and correlation coefficient of spike counts for populations. Within the

framework of our model, each of the variability and covariability measures can be

expressed in terms of internal model parameters in closed form, and in particular, in

terms of the auto- and crosscorrelation functions. Given experimental data, the

model enables the simulation of spike trains with the same statistics, as well as

manipulation of individual response properties. Furthermore, given a set of desired

statistics, the model can be used to generate population spike trains de novo.

Importantly, because the model is based on a dichotomized Gaussian framework, it

enables not only simulation of spike trains, but also direct analysis of the relationship

between different types of variability and covariability, and the impact of different
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response properties on population coding. Matlab code implementing the model

will be made available at www.ucl.ac.uk/ear/research/lesicalab.

Modelling experimental spike trains

Model framework

The basic framework of our model is described in our previous paper (Lyamzin

et al. 2010). We represent spike trains as binary vectors of length N where each

element corresponds to a time bin with a value of 1 if there is a spike and 0

otherwise. We assume the width of a time bin is small enough so that no more than

one spike occurs in any time bin. Each stimulus is presented I times, so that for each

cell a response to a single stimulus is a binary N� I matrix. We model a population

of P cells, with binary vectors r
p
i for each cell p on each trial i obtained by

thresholding a sum of Gaussian noise z
p
i that is different on each trial and a

deterministic component sp that is the same on each trial. Thresholding is done in

each time bin [n].

r
p
i ½n� ¼

1, sp½n� þ zp
i ½n�

� �
4 0

0, sp½n� þ z
p
i ½n�

� �
� 0

(

where i¼ 1, . . . , I, n¼ 1, . . . , N, and p¼ 1, . . . , P. A schematic illustration of the

model for single cells is shown in Figure 1.

The free parameters of this model are the values of sp, which must be fit for each

cell in each time bin, and the correlations in the Gaussian process z across both cells

and time (the component of z corresponding to each cell is constrained to have unit

variance across time).

The values of sp are determined by the PSTH of each cell. From experimental

data, one can calculate the PSTH (�rp) and then find sp[n] by solving Equation (1)

numerically in every time bin

�rp½n� ¼ � sp½n�, 1ð Þ ð1Þ

where �ðx, �2Þ is the Gaussian cumulative distribution function with zero mean and

variance �2 evaluated at x.

The correlations in z are determined by measuring the noise correlations in the

spike trains. Correlations in the spike trains of sensory neurons have both signal and

noise components, with signal correlations reflecting covariability in the stimulus-

driven component of the response that is repeatable from trial to trial, and noise

correlations reflecting covariability in the component of the response that is different

from trial to trial. We assume that signal and noise correlations are additive, and

thus define noise correlations between two spike trains as a difference between total

correlations and signal correlations. Note that, although the dichotomized Gaussian

framework can capture certain higher order statistical properties of spike trains

(Macke et al. 2011, Yu et al. 2012), we assume for our purposes that only second

order correlations are matched.

To set the correlations in the components of z corresponding to cells p and q at

time lag k, �pq
z ½k�, one first measures the corresponding noise correlations from the
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given set of spike trains:

�pq
noise½k� ¼ �

pq
total ½k� � �

pq
signal ½k�

which can be rewritten as

�pq
noise½k� ¼

cov r
p
i , r

q
i ðkÞ

� �� �
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðr
p
i Þ

� �
i
varðr

q
i Þ

� �
i

q �
cov r

p
i , r

q
i ðkÞ

� �� �
i 6¼jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðr
p
i Þ

� �
i
varðr

q
i Þ

� �
i

q ð2Þ

Figure 1. Schematic diagram of dichotomized Gaussian model for a single cell. The response
of a cell to a single stimulus presentation is assumed to be represented by a binary vector r of
length n, in which 1 corresponds to a time bin with a spike, and 0 corresponds to a time bin
without a spike. The same stimulus is presented I times and the response of a cell on a
particular trial in a particular time bin is denoted ri[n]. Spikes are generated based on a
Gaussian random ‘noise’ process z with unit variance, whose mean is different from time bin
to time bin as specified by the value of a ‘signal’ s. In each time bin n, the probability of
observing a spike across all trials (i.e. the PSTH) is given by the cumulative Gaussian
distribution function evaluated at s[n].
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where h�ii denotes the expected value of the covariance of two quantities on the same

trial, h�ii 6¼j denotes the expected value of the covariance of two quantities on different

trials, and r
p
i ðkÞ is the vector r

p
i shifted by k time bins. Then one finds the

corresponding �pq
z ½k� by substituting (3) into (2) and solving numerically

cov rp
i , rq

i ðkÞ
� �� �

i
¼ �2

sp½n�

sq½nþ k�
,

1 �pq
z ½k�

�qp
z ½k� 1

� �	 
� �
n

� rp
0rq

0 ð3Þ

Variability of single cells on short time scales: Signal to noise ratio

In our previous paper, we specified the trial-to-trial variability of each cell as the

signal to noise ratio

SNR ¼
varð�rÞ

varð�r � riÞ
� �

i

Because SNR is calculated for a single neuron, we omit cell indices for simplicity.

We showed that, because the response is binary, if the PSTH is known, it uniquely

defines SNR. This measure of variability is commonly used in the study of early

sensory systems; it describes the reliability and precision of spiking across trials with

respect to the stimulus. A cell with no noise, SNR¼1, would spike on every trial in

some bins, and never spike in the others. As the cell becomes less reliable, i.e. spikes

are missed on some trials, or less precise, i.e. jitter moves spikes from one bin to the

next, the SNR decreases. For a cell driven entirely by noise, i.e. a cell with a flat

PSTH, the SNR is zero.

Variability of populations on short time scales: instantaneous signal and noise

correlations

As described above, correlations in the spike trains of sensory neurons have both

signal and noise components. In our previous paper, we specified the instantaneous

signal and noise correlations, i.e. the correlations on the scale of a single time bin

with zero lag �pq
signal ½0� and �pq

noise½0�. We showed that, because the responses are binary

and the underlying noise process is Gaussian, matching the PSTH and signal to

noise ratio of individual cells in the population will also match the instantaneous

signal correlations between each pair. To match the instantaneous noise correlations

between each pair of cells, the parameters �pq
z ½0� that define the instantaneous

correlations of z must be fit as described above.

Variability of single cells on long time scales: Fano Factor

The purpose of this paper is to analyze the relationship between the parameters of

the Gaussian processes that underlie our model framework and experimentally

relevant properties of spike trains that depend on temporal correlations – CV of the

ISI distribution, Fano factor of spike counts, and correlation coefficient of spike

counts for populations. For this purpose, one follows the fitting process described in

the ‘‘Model framework’’ section to find the values of the covariance matrix of z not

only with zero lag, but at all lags k that correspond to significant noise correlations.

80 D. R. Lyamzin et al.
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To sample from the model and simulate spike trains, the correlated process z can be

generated by using Gaussian conditioning (MacKay 2003; Macke et al. 2009;

Lyamzin et al. 2010), or by using other methods, such as the multivariate

autoregressive process described in (Gutnisky and Josić 2010).

Fano factor, the ratio of spike count variance to mean spike count across trials,

has often been used as a measure of variability of spiking (Softky and Koch 1993;

Berry et al. 1997; Shadlen and Newsome 1998; Kara et al. 2000). Fano factor is an

obvious choice when neuronal activity is considered from the perspective of rate

coding, and it has been used extensively to quantify variability in cortical cells, and,

less commonly, cells of early sensory pathways. (Tolhurst et al. 1983; Sestokas and

Lehmkuhle 1988; Hartveit and Heggelund 1994; Berry et al. 1997; Gur et al. 1997;

Buracas et al. 1998; Gershon et al. 1998; Oram et al. 1999; Kara et al. 2000). A

spike count distribution with a Fano factor equal to one has variability that is similar

to that of a Poisson process, while neurons with Fano factors smaller than one are

more reliable and those with high Fano factors are more variable.

Within the framework of our model, Fano factor can be expressed in terms of the

correlation coefficients of z. Previous studies have shown that Fano factor depends

on the integral of the spike train autocorrelation function, with Fano factor being

bigger than one if the integral is positive, and less than one if the integral is negative

(Macke et al. 2009). In our model, Fano factor depends not only on the integral of

the autocorrelation function, but also, because the spike rate is not assumed to be

stationary, on the value of s in every time bin.

The expression for Fano factor in terms of autocorrelations of the Gaussian process

and signal can be written as (intermediate steps can be found in Appendix A):

FF ¼

PN
n¼1 � s½n�, 1ð Þ þ 2

PN
m¼nþ1

PN
n¼1 �2

s½n�

s½m�
, �z½m� n�

	 

�

PN
n¼1 �ðs½n�, 1Þ

 �2

PN
n¼1 �ðs½n�, 1Þ

ð4Þ

Thus, given s in every time bin, when the autocorrelation function of a spike train is

matched during the model fitting process, Fano factor is also matched. Modifying

Fano factor will require changing the spike train correlation structure. Generally

speaking, it can be changed arbitrarily, and in many cases simple scaling of correlation

coefficients in �z½k� for all k is a valid method (note that not all Fano factors are

realizable, as the covariance matrix of the underlying Gaussian process must remain

valid; this limitation is discussed in detail in the ‘‘Limitations of the model’’ section).

In the case of scaling, (4) can be converted into an equation in terms of the unknown

scaling factor and solved numerically. The correlation matrix will then be param-

eterized by the scaling factor �,X�
z

½m� n� ¼
1 ��z½m� n�

��z½m� n� 1

� �
so that (4) can be rewritten as

FFð�Þ ¼

PN
n¼1 � s½n�,1ð Þþ2

PN
m¼nþ1

PN
n¼1 �2

s½n�

s½m�
,��

z ½m�n�

	 

�

PN
n¼1 �ðs½n�,1Þ

 �2

PN
n¼1 �ðs½n�,1Þ

ð5Þ
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Thus, as long as the necessary scaling factor corresponds to a realizable

autocorrelation function, one can create a new Gaussian random process that

would produce spike trains with the desired Fano factor.

To demonstrate the ability of our model to both match and manipulate the Fano

factor in experimental spike trains, we fit our model to responses from a single

neuron in mouse auditory cortex. Spike trains were recorded during the presen-

tation of a 100 repeated trials of a 1 second segment of an amplitude modulated

broadband noise sound. Figure 2A shows a raster plot of the experimental

responses.

Sampling spike trains (with the same trial length) from the fitted model resulted in

responses with a Fano factor that matched the Fano factor in the original data, as

shown in red in Figure 2B (dashed line is the line of equality, error bars denote two

standard deviations of the values obtained by repeated bootstrap sampling). To

demonstrate the ability of the model to manipulate the Fano factor in experimental

data, we used Equation (5) to calculate a scaling factor for the autocorrelations of z

such that the spike trains sampled from the model would have a different,

predefined Fano factor. The responses of the model with scaled correlations

accurately matched seven arbitrary values of Fano factor, including bigger and

smaller values, as shown in black in Figure 2B.

Figure 2C shows histograms of spike counts for the two extreme cases of Fano

factor modification shown in Figure 2B. The distribution of spike counts for

FF¼ 0.8, the least variable example, is shown in blue bars. Spike counts are

relatively tightly clustered around the mean count. The distribution of spike counts

for the most variable example, FF¼ 2.0, is shown in white bars. The distribution is

considerably wider and contains many more extreme values.

The effects of the change in Fano factor can be seen by eye in the corresponding

raster plots. Figure 2D and E show the model responses with FF¼ 0.8 and

FF¼ 2.0, respectively. The spike trains shown in Figure 2D are much more regular

than those shown in Figure 2E, where one can see that a considerable proportion of

spikes comes in bursts. Note that by design, instantaneous variability as measured

by SNR is not affected by the manipulation of Fano factor: the SNR of the original

data was 0.036, whereas the SNR of the manipulated data was 0.039 for FF¼ 0.8

and 0.032 for FF¼ 2.0. Similarly, the mean spike rate and PSTH are also

unaffected.

Variability of single cells on short time scales: ISI distributions

Another important statistical property of the spike trains of individual cells is the

distribution of ISIs. For the case of stationary spike rates, which is most commonly

considered in the studies of ISI measures, ISI distributions are regularly shaped and

are approximated well by gamma distributions (Nawrot et al. 2008; Shimokawa

et al. 2010). The parameters of the gamma distribution in this case are defined by

the autocorrelation function of the cell. Positive autocorrelations result in less

regular spiking with ISI distributions that decrease monotonically with time.

Negative autocorrelations result in more regular spiking, with the ISI distribution

increasing with time for short ISIs, and then monotonically decreasing one once the

peak has been passed.

82 D. R. Lyamzin et al.
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Figure 2. A. Raster plot of spike trains in mouse auditory cortex. The vertical axis specifies
trial number, the horizontal axis specifies time since stimulus onset, and each dot on the plot
represents a spike. The data were collected during the presentation of a 100 repeated trials of
a 1 second segment of a sinusoidally modulated broadband noise sound. For model fitting,
the data were binned in 5 ms time bins. B. Values of Fano factor from a simulated dataset
versus desired value of Fano factor. We fitted our model to experimental data shown in
Figure 2A, simulated spike trains with the same properties, and calculated Fano factor of the

continued
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A useful landmark in the family of ISI distributions of cells with stationary spike

rates is the distribution associated with Poisson spiking. In this case the distribution

of ISIs is exponential with decay speed depending on the spike rate. In terms of

coefficient of variation (CV), which is the ratio of standard deviation of a

distribution to its mean, these spike trains, with CV equal to one, lie between

positively autocorrelated, irregular, spike trains (CV41), and negatively correlated,

regular, spike trains (CV51).

When spike rate is non-stationary, as is generally the case for sensory neurons, ISI

distributions can be quite complex. An obvious example would be phase-locked

spiking, where an ISI distribution can have several peaks at the ISIs that are

multiples of the period of stimulus modulation. However, autocorrelations still have

their own contribution in addition to the shape of the ISI distributions defined by

the stimulus modulation. For example, as in the stationary spike rate case, negative

autocorrelations due to refractoriness decrease the probability of short ISIs while

increasing the probability of long ISIs, thus resulting in more regular spiking

patterns (Berry et al. 1997).

For sensory systems, it is important to model spike trains with both refractoriness

and flexible ISI variability in general. To characterize the regularity of spiking, we

measure it with the squared coefficient of variation (CV2) of the ISI distribution.

Because of the generally non-stationary spike rate, CV2 cannot be used to compare

spiking regularity of different cells, but it is useful to measure the changes in spiking

regularity of the same cell. The absolute value of CV2 can also provide some

guidelines on the statistics of a spike train, and choosing this measure is partially

motivated by the ability to reference its values in limiting cases. For example, in

addition to the Poisson case noted above, CV2 is also a useful measure for

comparing spike trains to renewal processes, for which CV2 equals the Fano factor

of spike counts.

In our model, we can derive explicit expressions for the probability of an ISI given

s in every time bin and the autocorrelation function of the spike trains (assuming

that the ISI distribution is completely determined by second order statistics). The

probability of an ISI of length m time bins is the mean probability of this ISI length

over all time bins n.

PðISI ¼ mÞ ¼ PðISI½n� ¼ mÞ
� �

n

figure continued
original and simulated data. The corresponding point is plotted in red. We set 7 other
arbitrary values (from 0.8 to 2.0), solved for the scaling factor of each, simulated spike trains
for every autocorrelation found, and plotted the Fano factor calculated from the simulated
spike trains versus the desired Fano factor (in black). C. Spread of spike counts for the
simulated datasets with FF¼ 0.8 and FF¼ 2.0. Blue bars show the distribution of spike
counts for the simulated data with FF¼ 0.8, transparent bars with black edges show the
distribution of spike counts for the simulated data with FF¼ 2.0. D. Raster plot of the
simulated dataset where the autocorrelation function was scaled to match Fano factor value of
0.8. A magnified part of this raster plot is shown to the right. E. Raster plot of the simulated
dataset where autocorrelation function was scaled to match Fano factor value of 2.0,
presented as in D.
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These probabilities are calculated as follows:

P ISI ¼ mð Þ ¼ P ISI ½n� ¼ mð Þ
� �

n

P ISI½n� ¼ mð Þ ¼ P r nþ 1, nþ 2, . . . , nþm½ � ¼ 0, . . . , 1½ �jr½n� ¼ 1ð Þ

¼
1

P r½n� ¼ 1ð Þ
P r n, nþ 1, . . . , nþm½ � ¼ 10, . . . , 01½ �ð Þ

¼
1

�r n½ �

Z s½n�

�1

Z þ1
s½nþ1�

. . .|fflfflfflfflffl{zfflfflfflfflffl}
m�1

Z s½nþm�

�1

N ð0, �Þdx

where

� ¼

1 �z½1� � � � �z½m�

�z½1� 1 �z½m� 1�

..

. . .
.

�z½m� �z½m� 1� 1

2
6664

3
7775 ð6Þ

Thus, the probability distribution of ISIs, and hence its coefficient of variation, is

matched as long as the autocorrelation function of the spike trains is matched, to the

extent that the ISI distribution depends only on the second order statistics of the

intrinsic noise.

Modifying the CV2 of an ISI distribution is done by manipulating the correlation

coefficients of z. As in the case of Fano factor, this can be done by arbitrary changes

of correlation structure, but often works with scaling: all correlation coefficients in

the covariance matrix of z are multiplied by a parameter.

�� ¼

1 ��z½1� � � � ��z½m�

��z½1� 1 ��z½m� 1�

..

. . .
.

��z½m� ��z½m� 1� 1

2
66664

3
77775

and the probability of an ISI of length m at a given time bin n with a spike is

Pð�Þ ¼ P ISI n½ � ¼ mð Þ ¼
1

�r n½ �

Z s½n�

�1

Z þ1
s½nþ1�

. . .|fflfflfflfflffl{zfflfflfflfflffl}
m�1

Z s½nþm�

�1

N ð0, ��Þdx

Once the desired value of CV2 is specified, the value of the scaling factor can be

found numerically from the following formula.

CV 2ð�Þ ¼
var P �ð Þð Þ

Pð�Þ
� �2 ð7Þ

Where P(�) is the probability distribution of ISIs as a function of the scaling

parameter �.

Obviously, for independent manipulation of CV2 and FF, modification of the

correlations of z via simple scaling is not suitable. In this case, one has to use

modifications of the correlations of z that have two free parameters. One such

example is discussed in the ‘‘Independent manipulation of CV2 and FF’’ section.
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To demonstrate the ability of our model to match and manipulate the ISI

distribution of experimental data, we fit our model to a set of spike trains

from a single cell in mouse inferior colliculus (IC). Spike trains were

recorded during the presentation of 100 repeated trials of a 1 second

segment of amplitude modulated broadband noise sounds (see raster in

Figure 3A).

With the assumption of the ISI distribution being defined by second order

statistics, we match the signal component and autocorrelation function and thus the

ISI distribution. The ISI distribution of the original data and the data sampled from

the fitted model are shown in Figure 3B. The original distribution of ISIs is shown

in blue bars, and the distribution of ISIs sampled from the fitted model is shown by

the black and white line. The CV2 of the original data is 0.40 and CV2 of the data

sampled from the fitted model is 0.38.

Figure 3C demonstrates how scaling of the autocorrelations can change the

CV2 of the spike trains. We found the scaling factor of the autocorrelation

function that would produce spike trains with CV2 of 0.3 and 1.0, thus

increasing and decreasing spiking regularity respectively. The resulting distribu-

tions of ISIs are compared with the original in Figure 3C. (Note that depending

on the length of a trial in time bins, the use of sampling in the numerical search

for the parameter value in the Equation (7) can be computationally more

efficient than calculation of the ISI probability distribution by using the

Equations (6). The results shown in Figure 3C were obtained by sampling the

spike trains with scaled correlation coefficients and calculating the ISI probability

distribution directly from these spike trains.)

The effects of changes in the CV2 of the ISI distribution can be seen on the raster

plots in Figure 3D and E. In the case of CV2 of 1.0, there is no observed

refractoriness and spiking often occurs in bursts due to strong positive autocorre-

lations, as can be seen in the inset in Figure 3D. For CV2
¼ 0.3, spiking becomes

more refractory, as can be seen in the inset in Figure 3E; almost every spike has a

period of silence of one or more time bins, which is the result of increased negative

noise autocorrelations.

Variability of populations on long time scales: Count correlations

The effects of noise correlations on population coding can be studied across

multiple time scales (Bair et al. 2001; Averbeck et al. 2006; Smith and Kohn

2008). In our previous work (Lyamzin et al. 2010), we mainly addressed

instantaneous correlations that are related to spiking synchrony between two

cells. One can also consider correlations that are calculated from larger time

bins or whole trials. Correlations in spike counts across seconds have

the capacity to both increase and decrease the information carried by a

population depending on the correlation structure across the population,

and the perspective from which their effect is studied (Abbott and Dayan

1999).

As with the variability measures for individual cells described above, the pairwise

count correlations for a population of cells can be related to the covariance matrix of

the noise process z.
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Figure 3. A. Raster plot of spike trains in mouse inferior colliculus. The data were collected
during the presentation of a 100 repeated trials of a 1 second segment of a sinusoidally
modulated broadband noise sound. For model fitting, the data were binned in 1 ms time
bins. B. ISI distribution of original data (blue bars), and ISI distribution of spike trains
sampled from the model fitted to the original data (black and white line). C. ISI distribution
of original data (blue bars), and ISI distribution of manipulated data (black and white, red
and white lines). Given the parameters of the fitted model, we solved for the scaling
coefficient of autocorrelation function that would give us the desired value of CV2 of the ISI
distribution: 0.3 and 1.0, with CV2 calculated for the same range of time bins where the
autocorrelations are significant (k¼ 10). D. Raster plot of the simulated dataset where
autocorrelation function was scaled to match CV2 value of 1.0. E. Raster plot of the simulated
dataset where autocorrelation function was scaled to match CV2 value of 0.3.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

on
 1

2/
21

/1
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Count correlations are defined as

CC ¼
cov

PN
n¼1 rp½n�,

PN
m¼1 rq½m�

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r

¼

PN
n¼1 rp½n�

 � PN
m¼1 rq½m�

 �D E
�
PN

n¼1 rp½n�
D E PN

m¼1 rq½n�
D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r

First, we expand the product of spike counts:

XN
n¼1

rp½n�
XN
m¼1

rq½m�

* +
¼ rp½1�rq½1� þ rp½1�rq½2� þ � � � þ rp½n�rq½m� þ � � � þ rp½N �rq½N �
� �

and express each of the rp½n�rq½m� products in terms of cumulative distributions:

XN
n¼1

rp½n�

* +
¼
XN
n¼1

� sp½n�, 1ð Þ

XN
n¼1

rp½n�
XN
m¼1

rq½m�

* +
¼
XN
m¼1

XN
n¼1

�2

sp½n�

sq½m�
, �z m� n½ �

	 


The formula for count correlations can then be rewritten as

CC ¼

PN
m¼1

PN
n¼1 �2

sp½n�

sq½m�
, �z m� n½ �

	 

�
PN

n¼1 � sp½n�, 1ð Þ
PN

m¼1 � sq½m�, 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r ð8Þ

where assuming symmetry of correlations

�z½m� n� ¼
1 �pq

z m� n½ �

�qp
z m� n½ � 1

� �

and

var
XN
n¼1

rp½n�

 !
¼
XN
n¼1

� sp½n�, 1ð Þ þ
XN
n¼1

XN
m¼1

�2

sp½n�

sq½m�
, �z m� n½ �

	 


�
XN
n¼1

� sp½n�, 1ð Þ

 !2

Count correlations depend only on s and the crosscorrelation function between two

cells. Thus, when the crosscorrelation function between two neurons is matched

during the model fitting process, the count correlations are also matched.

As in the case of the single cell properties described above, manipulation of count

correlations can often be achieved by finding a scaling factor for the
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crosscorrelations of z that will result in spike trains with the desired count

correlations. The covariance matrix in this case is rewritten as

��
z ½m� n� ¼

1 ��pq
z ½m� n�

��qp
z ½m� n� 1

� �

where � is the scaling factor, and the variance of spike counts can be rewritten as

var
XN
n¼1

rp½n�

 !
¼
XN
n¼1

� sp½n�, 1ð Þ þ
XN
n¼1

XN
m¼1

�2

sp½n�

sq½m�
, ��

z m� n½ �

	 


�
XN
n¼1

� sp½n�, 1ð Þ

 !2

so that the count correlation value from (8) now depends on the scaling factor

CCð�Þ ¼

PN
m¼1

PN
n¼1 �2

sp½n�

sq½m�
, ��

z m� n½ �

	 

�
PN

n¼1 � sp½n�, 1ð Þ
PN

m¼1 � sp½m�, 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r
ð9Þ

Equation (9) can be solved for � numerically.

When the scaling factor of the crosscorrelation function is found, one can create a

new Gaussian random process z that would produce spike trains with the required

value of count correlations.

To demonstrate the ability of our model to both match and manipulate

pairwise count correlations in experimental spike trains, we fit our model to

responses from a pair of neurons in gerbil auditory cortex. Spike trains were

recorded during the presentation of a 100 repeated trials of a 200 ms segment

of an amplitude modulated broadband noise sound (see raster plots in

Figure 4A).

Sampling spike trains (with the same trial length) from the fitted model resulted in

responses with a count correlation coefficient that matched the count correlation

coefficient in the original data, as shown in red in Figure 4B. We also used Equation

(9) to calculate the scaling factor for the autocorrelations of z such that the result of

sampling from the model would have a different, predefined count correlation

coefficient. The responses of the model with scaled correlations accurately matched

four arbitrary values of correlation coefficient, including bigger and smaller values,

as shown in black in Figure 4B.

The difference between the two extreme simulated cases (count correlation of

0.4 and 0.7) can be seen from the plot of the joint spike count distributions in

Figure 4C and D (colored contours represent levels of equal probability,

points within red contours correspond to the most frequently occurring pairs of

spike count values, and points within blue contours correspond to less

frequently occurring pairs of spike count values). The distribution of spike

counts for spike trains with CC¼ 0.7 shown in Figure 4C is more elongated

along the diagonal than the distribution for spike trains with CC¼ 0.4 shown in

Figure 4D.
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Figure 4. A Raster plot of the spike trains from a pair of cells in gerbil auditory cortex. The
data were collected during the presentation of 100 repeated trials of a 200 second segment of
a sinusoidally modulated broadband noise sound. The data were binned in 5 ms time bins. B.
Matching the desired values of count correlations. The horizontal axis shows the desired
value of count correlation coefficient and vertical axis shows the count correlation coefficient
of the simulated spike trains. We fitted our model to the original data and sampled spike
trains from the fitted model. The count correlation of the simulated spike trains is plotted
versus the count correlation coefficient of the original spike train in red. We set four other
arbitrary values from 0.4 to 0.7 and solved for the scaling coefficient of the autocorrelation
function that would yield the desired count correlation in the simulated spike trains. The
count correlations calculated from the simulated spike trains are plotted versus the desired
values of correlations in black. Dashed line is the line of equality C, D. Contour plots of the
distributions of spike counts of two cells. For the count correlations of 0.7 (C) and 0.4 (D) we
created two-dimensional histograms of the spike counts of both cells with the spike count of
cell one on the horizontal axis, and the spike count of cell 2 on the vertical axis. C and D show
these histograms as contour plots, where each line denotes a level of constant probability of
falling inside the contour.
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Simulating spike trains de novo

Model framework

In addition to matching and manipulating a particular set of experimental data, the

model can also be used to generate a new spike trains with a desired set of statistics.

Unlike the data-based model in which the PSTH of each neuron and several

associated quantities are constrained to match those observed experimentally, the de

novo version of the model provides a fully flexible framework in which to investigate

the interaction of variability and covariability on different time scales.

In recent studies (De La Rocha et al. 2007) it has been shown, both theoretically

and experimentally, that correlations between two cells depend on their spike rates.

Within our the dichotomized Gaussian framework, this dependency also holds

(Macke et al. 2011). The advantage of our model is that similar relationships can be

observed for a wider range of parameters, e.g. SNR, signal correlations, Fano factors

etc. Additionally, our model can also be used to study how values of a given

parameter constrain the possible range of the others.

The model used for simulation of spike trains de novo is a modification of the one

described above. A version of this model with specified instantaneous variability and

covariability was described in detail in our previous work (Lyamzin et al. 2010). As

before, spike trains are generated as binary matrices by thresholding a sum of a

signal s that is the same on every trial and a noise z that is different on every trial.

r
p
i n½ � ¼

1, sp½n� þ z
p
i ½n�

� �
4 �p

0, sp½n� þ z
p
i ½n�

� �
� �p

(

where i¼ 1, . . . , I, n¼ 1, . . . , N, and p¼ 1, . . . , P.

The PSTH of each cell is no longer constrained by the experimental responses, but

must be defined in another way. One can simply choose an arbitrary deterministic

signal to create a pseudo-experimental situation, or choose a parametric stochastic

signal to allow precise control of the relevant spike train parameters. For the latter

case, we set s to be a Gaussian process with variance �2
sp that is a free parameter for

each cell. In this case, as both the mean spike rate r0 and the SNR are no longer

constrained by the PSTH, a second free parameter is required in the form of a

variable threshold �p. Both SNR and r0 can be expressed in terms of �2
sp and �p

(Lyamzin et al. 2010) and the required values solved for numerically.

Because instantaneous signal correlations are also no longer defined by the

PSTHs of the two cells, �pq
signal becomes a free parameter of the spike trains, which

can be manipulated by changing the corresponding �pq
s , the correlation coefficient

between the different components of s. In the previous paper, we showed that for

Gaussian s, �pq
signal and �pq

noise can be expressed in terms of �pq
s and �pq

z . Hence, given

the desired values of �pq
signal and �pq

noise, one can generate the correlated s and z

processes that would give spike trains with desired correlations after thresholding.

Fano factor of de novo spike trains

If we assume the signal s is Gaussian, we can write closed form expressions for the

same measures of variability and covariability presented in the ‘‘Modelling
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experimental spike trains’’ section. Fano factor can be written out as

FF ¼

PN
n¼1 �ð��, �2

s þ 1Þ þ
PN

n 6¼m �2
��
��

, �sþz½m� n�

	 

�

PN
n¼1 �ð��, �2

s þ 1Þ
 �2

PN
n¼1 �ð��, �2

s þ 1Þ
 �

The correlation matrix of the two-dimensional Gaussian now contains correlation

coefficients of s and z, as well as the variance of s. For derivation and details, see

Appendix B. Using this formula for cases when s can be assumed to be Gaussian can

dramatically decrease calculation times.

ISI distribution of de novo spike trains

In the case of de novo generation of spike trains with Gaussian s, we can write out the

probability of finding an ISI of a certain length m analogous to the ‘‘Fano factor of

de novo spike trains’’ section (again assuming that the ISI distribution is determined

only by second order statistics)

PðISI ¼ mÞ ¼ PðISI½n� ¼ mÞ
� �

n

where

P ISI ¼ mð Þ ¼ P ISI ½n� ¼ mð Þ
� �

n

P ISI ½n� ¼ mð Þ ¼ P r nþ 1, nþ 2, . . . , nþm½ � ¼ 0, . . . , 1½ �jr½n� ¼ 1ð Þ

¼
1

P r½n� ¼ 1ð Þ
P r n, nþ 1, . . . , nþm½ � ¼ 10, . . . , 01½ �ð Þ

¼
1

r0

Z ��
�1

Z þ1
��

. . .|fflfflfflfflffl{zfflfflfflfflffl}
m�1

Z ��
�1

N ð0, �sþzÞdx

and

�sþz ¼

1þ �2
s �z½1� þ �

2
s �s½1� � � � �z½k� þ �

2
s �s½k�

�z½1� þ �
2
s �s½1� 1þ �2

s �z½k� 1� þ �2
s �s½k� 1�

..

. . .
.

�z½k� þ �
2
s �s½k� �z½k� 1� þ �2

s �s½k� 1� 1þ �2
s

2
66664

3
77775

When the probability distribution is found for all ISI lengths, its coefficient of

variation is calculated as CV 2 ¼
varðPÞ

hPi2

Count correlations of de novo spike trains

Spike count correlation coefficient by definition is

CC ¼
cov

PN
n¼1 rp½n�,

PN
m¼1 rq½m�

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r
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¼

PN
n¼1 rp½n�

 � PN
m¼1 rq½m�

 �D E
�
PN

n¼1 rp½n�
D E PN

m¼1 rq½m�
D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

PN
n¼1 rp½n�

 �
var

PN
m¼1 rq½m�

 �r
where similarly to the analogous formula for Fano factor

XN
n¼1

rp½n�
XN
m¼1

rq½m�

* +
¼
XN
m¼1

XN
n¼1

�2

��p

��q
, �s m� n½ � þ�z m� n½ �

	 


and

var
XN
n¼1

rp½n�

 !
¼ N� ��p, �2

sp þ 1
� �

þ
XN
n¼1

XN
m¼1

�2

��p

��p
,

�2
sp þ 1 �pp

z ½m� n�

�pp
z ½m� n� �2

sp þ 1

" # !

� N� ��p, �2
sp þ 1

� �� �2
where, in turn, assuming symmetry of correlations

�s m� n½ � ¼
�2

sp �sp�sq�pq
s ½m� n�

�sp�sq�pq
s ½m� n� �2

sq

" #

�s m� n½ � ¼
1 �pq

z ½m� n�

�pq
z ½m� n� 1

� �

This formula can be used to analyze the dependencies of count correlation on single

cell and pairwise parameters. For example, because the variances of spike counts in

the denominator of the expression for count correlations depend only on

autocorrelations, but not on cross correlations, one can see that an increase in

autocorrelations (which leads to an increase in Fano factor) decreases count

correlations when crosscorrelations and other parameters are fixed.

Independent manipulation of CV2 and FF

In the ‘‘Modelling experimental spike trains’’ section, we showed how, by using the

version of the dichotomized Gaussian model with temporal correlations, one can

match and manipulate different parameters of variability and covariability in

experimental responses. In those examples, the different measures of variability and

covariability were considered independently of each other, though all may be

affected by changes in the auto- and cross correlation functions of the spike trains.

However, independent manipulation of different types of variability is also possible

if the correlation functions are parameterized by multiple parameters.

For example, both Fano factor and CV2 are influenced by autocorrelations, but

do not necessarily determine each other. For example, in the case of a homogeneous

binary process (the case of a constant s in our model), the relationship between Fano

factor and CV2 of the ISI distribution is expressed as (Cox and Lewis 1966).

FF ¼ CV 2 1þ
X1
k¼1

�serialðkÞ

 !
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Serial correlations �serialðkÞ are, in turn, functions of autocorrelations of z and their

sum will depend on the shape of the autocorrelation functions. Hence, in this simple

case one can potentially manipulate CV2 and Fano factor independently of one

another by changing the sum of the serial correlation coefficients by changing the

autocorrelation functions.

To provide a more complex example of the independent manipulation of Fano

factor and CV2 of the ISI distribution in our model, we parameterized autocorre-

lation functions with a family of functions with two free parameters (�,�) that model

both refractory spiking and burstiness:

�z½k� ¼
1, k ¼ 0

e��k � 2e��k k � 1

�
The sum of exponents allows for different positive overshoots after a refractory

period, which in turn will make it possible to have several different values of Fano

factor for a given value of CV2.

First, we investigated how FF and CV2 change with the changing parameters of

the autocorrelation functions, and then investigated how FF changes along the lines

on the (�, �) plane where the CV2 stays constant. This analysis demonstrates the

degree to which Fano factor and CV2 can be manipulated independently. For this

purpose, we created two examples – one in which s is a Gaussian process as in the de

novo framework described above, and another one in which s is an arbitrary

deterministic signal in the form of a sine wave (see figure legend for details).

Figure 5A shows the values of CV2 for a range of parameters of the described

family of functions in the case of sine wave s. For certain combinations of

parameters (�,�), the autocorrelation functions result in covariance matrices of z

that are not positive-definite, and thus the process is not realizable. This region of

parameter space is shown in white. For all the other possible combinations of

parameter values within the range selected for this illustration (� between 0 and 2,

and beta between 0 and 5), different values of CV2 are shown in different colors

from blue for the lowest values to red for the highest. We chose three values of

interest: CV2
¼ 5.5, CV2

¼ 5.7, CV2
¼ 5.9 and plotted the lines along which the

values of CV2 were equal to these values (shown in red). At the ends of the lines of

equality we plotted the autocorrelations of z that correspond to the combination

of parameters at the given end. From these plots, one can see that the same values of

CV2 can be achieved for different autocorrelation functions. Next, as shown in

Figure 5B, we calculated the Fano factors along each iso-CV2 curve. The insets

show autocorrelation functions for the corresponding set of parameters at both ends

of the curves (marked with black circles). Figure 5B shows that Fano factor changes

considerably along the iso-CV2 curves and, thus, there is a room for independent

manipulation of CV2 and Fano factor. However, when we chose s to be a Gaussian

random process rather than a sine wave and performed the same analysis as above,

the results were somewhat different. As shown in Figure 5C, even though the

autocorrelation functions change along the lines of equality for CV2, the range of

Fano factors is less that in the case of sinusoidal s. Thus, in this case, there is less

room for independent manipulation of CV2 and Fano factor.

The results in Figure 5 suggest a strong influence of the signal itself on the

statistics of the resulting spike trains. To investigate this issue in more detail, we

chose one particular correlation function from the family of functions described
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Figure 5. Map of values of CV2 in space of parameters of autocorrelation function of z. The
family of functions that we model autocorrelation functions with is described in the
‘‘Independent manipulation of CV2 and FF’’ section. The parameters � and � were varied
between 0 and 2, and 0 and 5 correspondingly. Colorbar to the right of the map shows the
actual values of CV2 for the corresponding color. Red lines on the map show lines of equality
for CV2 of 5.5, 5.7, and 5.9. Sample autocorrelation functions are plotted next to the ends of
isolines as insets (the corresponding ends are marked with black dots and arrows). The map is
created by sampling from a model in which s is a sine wave with frequency of 1.6 Hz,
amplitude of 1, and zero mean. The threshold was chosen such that the average spiking rate
was 60 spikes per second. The simulations were 1 second long, binned in 1000 time bins each
and had 1000 trials for every autocorrelation function. B. Range of changes in Fano factor
along the lines of equality of CV2. Using the map of CV2 values in two-parameter space (A),
we calculated Fano factor for all the pairs of parameters (in the given range) where CV2 is
constant and equal to 5.5, 5.7, and 5.9. The horizontal axis shows the index of the pair of
parameters (that increases as the values of parameters � and � decrease), and the vertical axis
shows the value of Fano factor for this combination of parameters. Insets show plots of the
autocorrelation functions on the corresponding ends of

continued
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above (with �¼ 0.3 and �¼ 1.5), and varied the frequency of the sinusoidal signal

and its amplitude relative to the intrinsic noise.

In the stimulus driven case (high signal amplitude), the CV2 values changed

substantially with changing frequency. As expected, in the noise driven case (with

low signal amplitude), changes in frequency had no significant effect on the ISI

distributions and hence the CV2 values. The figure shows that similar values of CV2

can be achieved through different combinations of signal and noise parameters, and

through different ISI distributions. We did the same analysis for several other,

qualitatively different functions from the same family, and found that the behavior of

the curves is similar for all of them.

These examples demonstrate that, although our framework can be used to vary

different measures of variability and covariability independently, the extent to which

this is possible can depend strongly on the stimulus.

Limitations of the model

We have shown how our model can be applied to spike trains with a range of

different statistical properties. However the dichotomized Gaussian framework has

limitations as well, as have been noted before (Macke et al. 2009; Gutnisky and Josić

2010), most of which stem from the fact that the covariance matrices of Gaussian

processes must be positive-definite. This constraint imposes limitations on the

allowed auto- and crosscorrelation functions that can be used in our model.

In particular, one strong limitation of the model is that only weak negative

correlations can be reproduced (Macke et al. 2009; Gutnisky and Josić 2010). The

ability of our model to capture weak negative correlations has been illustrated in the

‘‘Variability of single cells on short time scales: ISI distributions’’ section, where we

reproduced the refractory period of experimental spike trains, and then increased it,

such that the spiking became even more regular. However, as shown in Figure 7A,

the model is incapable of generating spike trains with strong negative correlations.

The red line shows the values of the autocorrelations of z that would be required

to match the autocorrelations in a set of spike trains with a strong refractory period

recorded from the IC. The covariance matrix corresponding to these values is not

positive definite, and thus the process is not realizable. We scaled the values and

weakened the negative autocorrelations until we obtained a realizable process,

resulting in the values shown in black.

figure continued
curves (marked with dots and arrows). C. Range of changes in Fano factor along the lines of
equality of CV2. We created a map analogous to the one shown in A (not shown here) but
with the s component in the generative process being a Gaussian process without temporal
correlations and with variance of 0.4. We chose to consider the range of changes in Fano
factor for the isolines with CV2 equal to 1.5, 1.6, and 1.7. The plot shows three corresponding
curves with increasing values CV2 of from bottom to top. As in B, the horizontal axis shows
index of the pair of parameters (that increases as the values of parameters � and � decrease),
and the vertical axis shows the value of Fano factor for this combination of parameters. Insets
show plots of the autocorrelation functions on the corresponding ends of curves (marked with
dots and arrows).
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When a process is close to unrealizable, the strongest realizable correlations, and

the behavior of the process that is generated, depend on the maximum lag at which

the correlations are specified. In the example in Figure 7A, we only specified the

autocorrelation function of z at lags 1 to 4. However, when we then used our model

to generate a set of spike trains, the resulting spike trains contained significant

positive autocorrelations at lag 5, as shown in black in Figure 7B. If one deliberately

sets a zero correlation coefficient for z at lag 5, the positive autocorrelations in the

spike trains are simply delayed to lag 6. This procedure, of explicitly setting zero

correlation coefficients at successively larger lags, ultimately leads to a non-positive

definite covariance matrix for z, and thus an unrealizable process (note that this

Figure 6. CV2 of the ISI distribution as a function of amplitude and frequency of the
sinusoidal signal. We varied the amplitude of signal from 0.1 to 10 with the amplitude of
noise always being 1. The frequency was varied between 0.16 and 40 Hz (note that the
frequency axis has logarithmic scale). Simulations were done in 200 trials for each point, were
1 second long and binned in 1000 time bins. All the curves are plotted for the same
autocorrelation function chosen from the family described in the ‘‘Independent manipulation
of CV2 and FF’’ section with �¼ 0.3 and �¼ 1.5, which corresponds to a positive non-
monotonically decreasing function. Dashed line shows the case when signal is completely
absent. Histograms in the smaller insets show the ISI distributions for the marked points on
the curves. The horizontal axis shows the length of ISIs in ms, and the vertical axis shows the
number of occurrences of an ISI of a given length. With the wide range of relative amplitudes
of signal one can see the behavior of the model in signal driven (high amplitude) and noise
driven (low amplitude) cases. In the signal driven cases ISI histograms are defined by the
structure of the signal (see the histograms on top and on the right having the periodic features
of the corresponding signals), and in the noise driven cases, changes in signal frequency do
not affect the ISI distribution in any significant way. The figure also illustrates that similar
CV2 values can be achieved in both signal and noise driven regimes and have qualitatively
different underlying ISI distributions (compare the two lower histograms). Note that curves
are plotted in logarithmic axes.

Modelling covariability across multiple time scales 97

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

on
 1

2/
21

/1
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



artifact is present not only in the spike train correlations, but also in the z process

itself). This example illustrates the importance of choosing the range of autocor-

relations carefully, and verifying that the corresponding model is realizable and can

generate spike trains with the desired statistics.

Because of the limitations on the negative autocorrelation functions, values of

Fano factor cannot be arbitrarily small. Similarly, ISI distributions that require a

strong refractory period may not be realizable.

Discussion

The variability of single neurons and the covariability of neuronal populations can be

measured on multiple time scales from synchrony in precise spike timing to

correlations in spike count over a period of seconds. In previous work, we

demonstrated the ability of a dichotomized Gaussian framework to reproduce the

instantaneous variability in single neurons, and the instantaneous signal and noise

correlations (i.e. synchrony) in neuronal populations (Lyamzin et al. 2010). In this

study, we have shown how the dichotomized Gaussian model can capture variability

and covariability on multiple time scales, and demonstrated its success in capturing

the Fano factor, ISI distributions, and count correlations in experimental spike trains.

Our main motivation for developing the model was to enable the systematic study

of different response properties of neuronal populations that cannot be easily

decoupled experimentally. For example, to determine the time scales at which

variability is important for coding a particular stimulus parameter, it is helpful to be

able to manipulate the variability on different time scales independently.

While this manipulation may be difficult to achieve experimentally (any change in

the spike train autocorrelation function is likely to affect variability on multiple

timescales), it may be achievable within our model framework with appropriate

Figure 7. Effects of positive definite requirement on the covariance matrix of z. A. Example of
the autocorrelation function of z calculated from the experimental data (red), and the closest
realizable autocorrelation function (black). B. The attempt to reproduce strong negative
correlations also leads to an artifact in the resulting spike trains. We simulated spike trains
with correlations in time extending to the time bin 4 (no significant correlations beyond that
limit in the original data), the simulated dataset had an artifact of significant positive
correlations in time bin 5. When zero-padded (we deliberately added zero correlations to the
time bin 5 in the correlation function of z), the artifact peak shifted to the next time bin.
Further zero-padding resulted in a process that was unrealizable.
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parameterization. For example, as shown in the ‘‘Independent manipulation of CV2

and FF’’ section, Fano factor and CV2 of the interspike interval distribution can be

manipulated independently under certain conditions.

Our model can also be used to systematically investigate the dependencies between

different properties of spike trains. For example, our model framework captures the

dependency of correlations on spike rate demonstrated in (De La Rocha et al. 2007)

and analyzed in-depth in (Macke et al. 2011). Because our model captures the full

second order structure of population spike trains, it should prove to be a useful tool

for studying a wide range of such dependencies, as well as for determining how the

value of a given response property constrains the possible range of possible values of

others. For example, if one assumes that only second order correlations and stimulus

affect the values of Fano factor and CV2, our model provides a way to investigate the

dependencies between them. Another example would be the inverse dependency of

count correlations on the temporal autocorrelations of individual neurons, when

pairwise correlations remain fixed, as noted in the ‘‘Count correlations of de novo

spike trains’’ section.

We have also shown that the framework has significant limitations, the most

important of which is the inability to generate or model spike trains with strong

negative correlations. This limitation arises from the requirement that the

covariance matrix of the multivariate Gaussian process z is positive definite. Note

that this limitation is inherent to the model framework, and is independent of the

specific method used to generate the Gaussian process when simulating spike trains

(Gutnisky and Josić 2010). Because of this limitation, the model is better suited to

modelling spike trains from cortical areas where correlations are typically positive

(Bair et al. 2001; Smith and Kohn 2008) than subcortical areas where strong

negative correlations due to refractory effects may be prominent.

Another limitation of our model is that it is only designed to capture the first and

second order statistical properties of spike trains and may not accurately reflect higher

order properties, such as the dependencies between successive ISIs or correlations

among groups of neurons that are not predictable from second order statistics. This

limitation may be important for certain brain areas where higher order correlations

carry significant information (Ohiorhenuan et al. 2010, Farkhooi et al. 2009,

Nesse et al. 2010). One should note that even though the dichotomized Gaussian

does not allow for explicit control of higher-order correlations, it still produces them

as a result of the thresholding process (Macke et al. 2011). Interestingly, the higher-

order correlations produced by the Gaussian model correspond well to the higher-

order correlations found in cortex (Yu et al. 2012). These results suggest that

models based on the dichotomized Gaussian framework are potentially promising

for research into the effects of higher-order correlations on coding, although further

experimental study of this issue is needed.
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Appendix A

By definition, Fano factor is the ratio of spike count variance and mean spike count

across the trials.

FF ¼
var

PN
n¼1 r½n�

 �
PN

n¼1 r½n�
D E ¼

PN
n¼1 r½n�

 �2
� �

�
PN

n¼1 r½n�
D E2

PN
n¼1 r½n�

D E
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(because Fano factor is a single cell quantity, cell indices are omitted for simplicity).

We expand the square of the spike count to deal with the expected values of the

elements of this expansion.

XN
n¼1

r½n�

 !2

¼ r½1�r½1� þ r½1�r½2� þ � � � þ r½n�r½m� þ � � � þ r½N �r½N �

Since r is a binary vector, r[n]r[n]¼ r[n] and thus hr½n�r½n�i ¼ �ðs½n�, 1Þ.

We define correlation matrix

�z½k� ¼
1 �z½k�

�z½k� 1

� �
then rewrite the expression for the square of the spike count as follows:

XN
n¼1

r½n�

 !2* +
¼

XN
n¼1

r½n�r½n� þ 2
XN

m¼nþ1

XN
n¼1

r½n�r½m�

* +

¼
XN
n¼1

� s½n�, 1ð Þ þ 2
XN

m¼nþ1

XN
n¼1

�2

s½n�

s½m�
, �z½m� n�

	 


and the full expression for Fano factor is

FF ¼

PN
n¼1 � s½n�, 1ð Þ þ 2

PN
m¼nþ1

PN
n¼1 �2

s½n�

s½m�
, �z½m� n�

	 

�

PN
n¼1 � s½n�, 1ð Þ

 �2

PN
n¼1 � s½n�, 1ð Þ

:

Appendix B

Fano factor by definition is

FF ¼
var

PN
n¼1 r½n�

 �
PN

n¼1 r½n�
D E ¼

PN
n¼1 r½n�

 �2
� �

�
PN

n¼1 r½n�
D E2

PN
n¼1 r½n�

D E
(because Fano factor is a single cell quantity, cell indices are omitted for simplicity).

Expanding the first term in the numerator we get

XN
n¼1

r½n�

 !2

¼ r½1�r½1� þ � � � þ r½m�r½n� þ � � � þ r½N �r½N �

Where each r[n]r[n] term equals r[n] because r is a binary vector.

hr½n�r½n�i ¼ hr½n�i ¼ hs½n� þ z½n�4 �i ¼ �ð��, �2
s þ 1Þ
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For all the other products r[n]r[m] where n 6¼m

hr½n�r½m�i ¼ �2

��

��
, �sþz½m� n�

	 

Where �2 is a two-dimensional Gaussian cumulative distribution function, and we

define �sþz as

�sþz½m� n� ¼
�2

s þ 1 �z½m� n� þ �2
s �z½m� n�

�z½m� n� þ �2
s �z½m� n� �2

s þ 1

" #

Hence the final formula for Fano factor is (assuming symmetry of correlations)

FF ¼

PN
n¼1 � ��,�2

s þ 1
� �

þ
PN

n6¼m �2

��

��
, �sþz½m� n�

	 

�

PN
n¼1 � ��,�2

s þ 1
� � �2

PN
n¼1 � ��,�2

s þ 1
� � �
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