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Abstract

The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed
important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong
correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and
these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered
averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias
due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here,
we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present
in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation
RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We
demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the
responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli.
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Introduction

Traditionally, the response properties of sensory neurons have

been studied using simple stimuli such as bars and sinusoidal

gratings for vision, and clicks or pure tones for audition. More

recently, the range of stimuli used to probe sensory function has

been expanded to include more complex stimuli such as Gaussian

white noise. While studies of responses to such artificial stimuli

have provided the foundation for our understanding of sensory

function, recent studies suggest that there may be fundamental

differences between the neural responses to artificial stimuli and

natural stimuli. For example, numerous studies have shown that

natural stimuli are coded more efficiently than artificial stimuli in

both the visual [1–4] and auditory [5–8] systems. Furthermore,

there is evidence that models of sensory processing derived from

responses to artificial stimuli are not sufficient to predict neural

responses to natural stimuli [9–11]. These results suggest that if we

hope to understand sensory function under natural conditions, we

must study neural responses to natural stimuli directly.

Natural visual and auditory stimuli have complex statistical

properties. For example, natural stimuli typically contain strong

correlations, evidenced by power that decreases with increasing

spatiotemporal or spectrotemporal modulation frequency as 1/fa,

with a typically between 1 and 3 [12–15]. Natural stimuli are also

spherically asymmetric, meaning that the probability distribution of

stimulus intensities is not symmetric about the mean intensity (in

contrast to, for example, Gaussian white noise) [13–17]. Unfortu-

nately, these same complex statistical properties that differentiate

natural stimuli from artificial stimuli also complicate the use of

neural responses to natural stimuli in fitting models of sensory

processing. With the most popular methods for characterizing

sensory processing, reverse-correlation and spike-triggered averag-

ing, an estimate of the linear filter or receptive field (RF) that

provides the minimum mean squared error prediction of the neural

response is computed as a weighted average of all stimuli, with each

stimulus scaled by the magnitude of the response that it evoked.

While these methods have proven extremely useful for character-

izing the basic function of sensory systems (for a recent review, see

[18]), they require that the stimulus is drawn from a spherically

symmetric distribution in order to produce an unbiased RF estimate

[18–22]. While this constraint may be satisfied by artificial stimuli

such as Gaussian white noise, it is violated by the correlations and

asymmetries typically found in natural stimuli, and, thus, under

certain conditions, reverse correlation RF estimates computed from

responses to natural stimuli can be biased.

A number of least-squares techniques in which the second-order

stimulus correlations are essentially ‘divided out’ have been

developed and used to estimate RFs from the responses of visual

and auditory neurons to natural stimuli (for reviews, see [21,23–

25]). In addition to correcting for the second-order correlations in

the stimulus, these approaches also correct for asymmetries in the

stimulus that are due to these correlations, but other asymmetries
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that remain can bias the RF estimate. These effects were

demonstrated in a recent simulation study that showed that even

for a system consisting only of a cascade of a linear RF and a

simple threshold nonlinearity, the interaction between higher-

order correlations in the stimulus and the nonlinearity can lead to

a biased RF estimate [26].

From an intuitive perspective, the bias in reverse correlation RF

estimates caused by spherical asymmetries in the stimulus is similar

to the error that would result from non-uniform stimulus sampling

in a simple experiment. For example, in an attempt to characterize

the ocular dominance of a neuron in the visual cortex based on the

total number of spikes elicited by stimulation of each eye, it is clear

that each eye must be stimulated the same number of times. If the

number of stimuli presented to each eye is different, then the

results must be explicitly corrected by dividing the total number of

spikes elicited by stimulation of each eye by the number of times

the eye was stimulated. A similar approach can be used to correct

the bias in reverse correlation RF estimates spherical asymmetries

in the stimulus.

Here, we develop a method for RF estimation from responses to

natural stimuli that corrects for the biases introduced by spherical

asymmetries by explicitly weighting the contribution of each stimulus

to the RF estimate not only by the response it evokes, but also by its

probability of occurrence relative to other stimuli with the same

magnitude (vector norm). Through a series of simple examples using

simulated neural responses, we illustrate how stimulus asymmetries

can bias reverse correlation RF estimates (even for uncorrelated

stimuli) and demonstrate how explicit correction for spherical

asymmetries can remove this bias. We also demonstrate the

application of the asymmetry correction method to experimental

data by estimating the temporal RFs of retinal ganglion cells from

responses to correlated, spherically asymmetric natural luminance

sequences and using the RFs to predict responses to novel stimuli.

Analysis

In this section, we establish a linear-nonlinear (LN) response

model and describe the conditions under which the reverse

correlation technique provides an accurate RF estimate within this

context. We show how stimulus correlations and asymmetries can

bias reverse correlation RF estimates and detail a method for

removing these biases.

A linear-nonlinear model for neural responses
We assume an LN model where the neural response is given by

ri = f (si
T g), where ri is the instantaneous firing rate of the neuron

at time i, f (?) is a static nonlinear function,

si~

si

si{1

..

.

si{mz1

2
66664

3
77775

is the vector of the m most recent stimuli (we refer to m as the

stimulus dimensionality), and

g~

g1

g2

..

.

gm

2
66664

3
77775

is the time-invariant temporal RF. We assume that the stimulus is

wide-sense stationary (i.e., its first- and second-order statistical

properties are not changing over time) and has zero mean

X?
i~1

si~0

A record of n stimulus/response observations can be summa-

rized as:

r~f Sgð Þ where r~

r1

r2

..

.

rn

2
66664

3
77775 and s~

sT
1

sT
2

..

.

sT
n

2
66664

3
77775 ð1Þ

are the vector of neural responses at each time and the matrix of

stimulus vectors, respectively. Note that in the case where the

input to the static nonlinear function f (?) is a vector, its output is

also a vector of the same dimension.

Reverse correlation receptive field estimation
If the system were linear (r = S g), the optimal estimate of the

RF ĝ* (i.e. that which minimizes the mean squared error between

the actual response and that predicted by the RF estimate) would

be given by

ĝg
1
~arg ming[Rm r� Sgk k

where I?I denotes vector norm (see equation 4). Many authors

have shown that the solution to this equation is

ĝgls~C{1
s ST r ð2Þ

where CS = S T S is the autocovariance matrix of the stimulus (see,

for example, [23]). For uncorrelated stimuli with CS proportional

to the identity matrix, the reverse correlation estimate of the RF

ĝg~ST r ð3Þ

will be proportional to the optimal solution ĝ*. It has also been

shown that this solution holds for the LN system described above,

provided that the stimulus has zero mean and is drawn from a well

sampled spherically symmetric distribution, i.e. all stimuli with the

same ,2-norm

sik k~
Xmz1

j~0

si{j
2

 !1=2

ð4Þ

must occur with the same probability

V si,sj : sik k~ sj

�� ��� �
: P sið Þ~P sj

� �
ð5Þ

and that the shape of the static NL is such that average stimulus

evoking a response is non-zero (for proof, see [19]). Thus, for

reverse correlation to provide an accurate RF estimate within the

context of the LN model, the stimulus must be uncorrelated and

spherically symmetric.

Estimating Receptive Fields
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The utility of the reverse correlation approach is illustrated in

the simple example shown in figure 1a. In this example, the

stimulus is a Gaussian white noise sequence (representing, for

example, luminance changes in a spatially uniform visual stimulus

or the temporal modulations in a pure tone auditory stimulus).

The Gaussian white noise stimulus is uncorrelated and spherically

symmetric, as evidenced by the two-point stimulus intensity

distribution and autocovariance matrix CS shown in figure 1a. We

simulate responses to this stimulus using the LN model

(equation 1), with g = [0.3, 20.15] (representing a weighted

temporal summation of m = 2 stimulus values) and f (?) a perfect

half-wave rectifier (f (x) = x for x.0 and f (x) = 0 otherwise).

Because the stimulus is uncorrelated and spherically symmetric,

the reverse correlation estimate of the RF from the simulated

responses ĝ = S T r (red arrow) matches the actual RF (green

arrow).

The effects of stimulus correlations
If the stimulus is correlated, then the reverse correlation

estimate ĝ will be a biased version of the actual RF g, with the

bias determined by the autocovariance matrix CS. This is

illustrated in the simple example shown in figure 1b. In this

example, the stimulus is a Gaussian noise sequence with strong

correlations, evidenced by the skewed two-point intensity distri-

bution and the non-zero off-diagonal elements of the autocovar-

iance matrix CS. Because of these correlations, the reverse

correlation estimate of the RF ĝ (red arrow) computed from

responses simulated with the LN model is biased toward the

elongated dimension in the stimulus distribution and does not

match the actual RF g (green arrow).

Fortunately, the reverse correlation estimate ĝ can be modified

to correct the bias due to the stimulus correlations. For example,

the reverse correlation estimate can be multiplied by the inverse of

the autocovariance matrix to produce the least-squares RF

estimate ĝls as described above. Indeed, this correction has been

used to estimate RFs from responses to natural stimuli in many

brain areas [9,11,27–31]. An alternative approach is to transform

the stimulus to remove correlations before computing the reverse

correlation estimate [3,4]. For the LN model neuron described

above we can transform the stimulus as follows:

r~f S gð Þ~f S A A{1g
� �

~f S cð Þ ð6Þ

where S = S A and c = A21 g. We can compute the reverse

correlation estimate of the transformed RF c from the transformed

stimulus S and the response r, ĉ = STr, and obtain an estimate of

the actual RF g by inverting the transformation on the RF, ĝc = A
ĉ. The matrix A is chosen such that the transformed stimulus is

uncorrelated (i.e. its autocovariance matrix is proportional to the

identity matrix). The autocovariance matrix of the transformed

stimulus CS can be written as:

CS~ST S~ SAð ÞT SAð Þ~AT ST SA~AT CSA

Thus, we want to choose A such that AT CS A = I. CS can be

decomposed as CS = V DV21 where V is an orthogonal matrix of

the eigenvectors of CS (i.e. the principal components of S) with V T

= V21 and D is a diagonal matrix with the corresponding

eigenvalues [l1
2, l2

2, …, lm
2] on the diagonal (or, alternatively, a

similar representation can be obtained through singular value

decomposition as described in [32]). If we choose A = V (D21/2)T ,

then CS = AT CS A = D21/2 V T (V DV21) V (D21/2)T = I and the

transformed reverse correlation estimate

ĝgc~A c~A ST r ð7Þ

will not be biased by the stimulus correlations.

To demonstrate the utility of this correction, we return to the

simple example of estimating a known RF from simulated

responses to a correlated Gaussian noise stimulus shown in

figure 1b. As described above, because of the correlations in the

Figure 1. RF estimates from simulated responses to correlated and asymmetric stimuli. a) 60 sample segment of an uncorrelated and
symmetric Gaussian white noise stimulus (top) along with its two-point intensity distribution (bottom) and autocovariance matrix CS (bottom inset).
The actual RF g = [0.3, 20.15] (m = 2) used to simulate LN model responses to the stimulus (green arrow) is shown along with the reverse correlation
estimate of the RF ĝ computed from the simulated responses (red arrow). b) Results for a correlated Gaussian noise stimulus, presented as in a, along
with the autocovariance matrix of the transformed stimulus CS and the reverse correlation RF estimate after correction for stimulus correlations ĝc

(blue arrow). c) Results for an uncorrelated stimulus drawn from an exponential distribution, presented as in b, along with the reverse correlation RF
estimate after correction for stimulus correlations and asymmetries ĝcs (cyan arrow). d) Results for a correlated and asymmetric stimulus, a time-series
of natural intensities taken from the database of van Hateren [16], presented as in c.
doi:10.1371/journal.pone.0003060.g001

Estimating Receptive Fields
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stimulus, the reverse correlation estimate ĝ is biased. However, if

we apply the transformation described in equation 6 to correct for

the stimulus correlations, then the autocovariance matrix of the

transformed stimulus CS has zero off-diagonal elements and the

resulting RF estimate ĝc(blue arrow) now matches the actual RF g.

Note that the transformed reverse correlation estimate ĝc = A
ST r can also be written as ĝc = A ATSTr = V(D21/2)TD21/2

VTSTr. In this form, it is clear that in computing the transformed

reverse correlation estimate, each principal component of S is

multiplied by a factor related to the inverse of the corresponding

eigenvalue. Thus, those principal components with smallest

eigenvalues will have the largest effect on the estimate. For high

dimensional natural stimuli with strong correlations, the difference

between the largest and smallest eigenvalues can be several orders

of magnitude (i.e. the condition number of the stimulus

autocovariance matrix can be extremely large), and the effect of

the principal component with largest eigenvalue on the RF

estimate can be dwarfed by that of the principal component with

the smallest eigenvalue. In this case, the RF estimate will be largely

determined by those principal components along which the

stimulus has the smallest variance and, under experimental

conditions where only a limited number of noisy responses are

observed, a large difference in eigenvalues can result in an RF

estimate that is dominated by noise.

A number of approaches have been proposed to address this

problem. For example, Theunissen and colleagues [9,23] have

computed the transformed RF estimate using only those principal

components with eigenvalues larger than some threshold value (i.e.

if an eigenvalue is less than the threshold value, then the element

of D21/2 corresponding to that eigenvalue is set to zero). We

adopted a variant of this approach in which only those principal

components required to explain a certain fraction 0,e#1 of the

variance in the stimulus were retained. In addition to reducing the

noise in the transformed reverse correlation RF estimate,

eliminating some fraction of the principal components allows the

stimulus to be represented in a lower dimensional space m*#m,

which simplifies the estimation of the stimulus probability

distribution P(s) as described below.

The effects of stimulus asymmetries
The transformation described above corrects the bias in reverse

correlation RF estimates due to the second-order correlations in

the stimulus, as well as the bias due to any asymmetries in the

stimulus intensity distribution that result from those correlations.

However, complex stimuli can contain additional asymmetries and

these asymmetries can also bias RF estimates. This is illustrated in

the simple example shown in figure 1c. In this example, each value

of the stimulus is drawn from an uncorrelated exponential

distribution, and there are clear asymmetries in the two-point

intensity distribution. Because of these asymmetries, the reverse

correlation estimate of the RF ĝ (red arrow) computed from

simulated response of the LN model is biased and does not match

the actual RF (green arrow). Additionally, because the stimulus

autocovariance matrix CS is already proportional to the identity

matrix, applying the transformation described in equation 6 to

correct for the stimulus correlations has no effect, and the

transformed reverse correlation RF estimate ĝc(blue arrow) is also

biased.

Fortunately, the bias in the RF estimate due to stimulus

asymmetries can also be corrected. Conceptually, the correction

necessary to remove the bias due to stimulus asymmetries is

analogous to the transformation used to correct the bias due to

stimulus correlations. In removing the bias due to stimulus

correlations, each principal component is weighted by the inverse

of the amount of stimulus variance that it explains, such that the

effective contribution of every principal component to the

transformed stimulus is the same. Similarly, the bias due to

stimulus asymmetries can be removed by weighting each stimulus

by its probability of occurrence relative to those of other stimuli

with the same vector norm, such that the effective probability

distribution of the stimulus is spherically symmetric. If we want to

correct the biases due to stimulus correlations and asymmetries

simultaneously, then we can estimate the RF as:

ĝgcs~A~SST r, where ~SS~

~PP s1ð ÞsT
1

~PP s2ð ÞsT
2

..

.

~PP snð ÞsT
n

2
666664

3
777775 ð8Þ

where P̃(si) = P̄(IsiI) P(si)
21 is the asymmetry correction for a

particular (transformed) stimulus and P̄(IsiI) is the mean

probability of occurrence of all stimuli with same vector norm as

stimulus si.

The asymmetry correction described in equation 8 requires

estimation of the overall probability distribution of the stimulus P(s)

and norm-specific probabilities P̄(IsiI). In practice, we estimate P(s)

by grouping stimuli into evenly spaced bins that span the range of

stimulus values. P(s) is estimated not from the original stimulus, but

from the coefficients that define each stimulus within the space

defined by the principal components in V, thus reducing the

dimensionality of P(s) from m to m* (note that for natural stimuli,

which typically contain strong correlations, the value of m* that

results in the best RF estimates is often much less than m). The norm-

specific probabilities P̄(IsiI) are estimated by dividing the range of

norms into evenly spaced bins and taking the mean of the

probabilities of all stimuli whose norms fall within each bin. In

general, we found that the effect of the correction for stimulus

asymmetries was robust to changes in the number of bins used to

estimate P(s) and P̄(IsiI), even for relatively high-dimensional

problems. Thus, for all of the simulated and experimental examples

below, the probability distribution of the stimulus P(s) was computed

after dividing the range of stimulus values into 250 evenly spaced

bins and the norm-specific probabilities P̄(IsiI) were computed

after dividing the range of norms into 250 evenly spaced bins.

To demonstrate the utility of the asymmetry correction

described in equation 8, we return to the simple example of

estimating a known RF from simulated responses to a stimulus

drawn from an uncorrelated exponential distribution shown in

figure 1c. As described above, because of the asymmetries in the

stimulus, both the reverse correlation estimate ĝ and the

transformed reverse correlation estimate ĝc are biased. However,

if we apply the asymmetry correction described in equation 8, then

the resulting RF estimate ĝcs = A S̃T r (cyan arrow) now matches

the actual RF (green arrow).

Temporal receptive field estimation from simulated
responses to natural stimuli

A final simple example shown in figure 1d demonstrates the

utility of the asymmetry correction for a stimulus that is both

correlated and asymmetric. In this example, the stimulus is a time-

series of natural intensities taken from the database of van Hateren

[16]. This stimulus contains strong correlations and asymmetries,

as illustrated in two-point intensity distribution and stimulus

autocovariance matrix CS shown in figure 1d. Because of these

correlations and asymmetries, the reverse correlation estimate of

the RF ĝ (red arrow) computed from simulated responses of the

Estimating Receptive Fields
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LN model is biased and does not match the actual RF g (green

arrow). Transformation of the stimulus to remove the bias due to

correlations improves the estimate ĝc(blue arrow), but only after

correction for for both stimulus correlations and asymmetries does

the estimate ĝcs (cyan arrow) match the actual RF.

The simple examples in figure 1 demonstrate the ability of the

asymmetry correction to improve estimates of low-dimensional

(m = 2) RFs. However, the RFs estimated from experimental

responses of sensory neurons data typically have a much higher

dimensionality (,10,m,,1000). Because the asymmetry cor-

rection depends on the estimation of the m*-dimensional

probability distribution of the stimulus P(s), the efficacy of the

correction may decrease as m increases.

To improve the efficacy of the asymmetry correction for higher-

dimensional RFs, we added two additional parameters. The first

parameter, h, specifies the vector norm threshold that determines

whether stimuli and their corresponding responses are included or

excluded from the RF estimate (only stimuli with vector norms

below h are included in the estimate). The second parameter, w,

specifies the maximum value for the asymmetry correction P̃(si).

After rescaling the asymmetry corrections for all stimuli such that

1#P̃(si),‘, any P̃(si).w are set equal to w. For natural stimuli,

the probability of a stimulus P(s) tends to decrease with increasing

norm and excluding those low probability stimuli with large norms

or limiting the value of their asymmetry correction P̃(si) can

improve the efficacy of the overall asymmetry correction.

Including the two new parameters h and w, the asymmetry

correction can be written as

ĝgcs~AS
1T r, where S

1
~

P
1

s1ð ÞsT
1

P
1

s2ð ÞsT
2

..

.

P
1

snð ÞsT
n

2
666664

3
777775 ð9Þ

where P*(si) = min (w, Ni P̃(si)) and Ni = 1 if IsiI#h and 0

otherwise. In all of the examples below, we test the efficacy of the

asymmetry correction for a range of values for h and w, including

h= ‘ and w= 1, the values for which the asymmetry correction

has no effect and the RF estimate ĝcs is equivalent to the RF

estimate that is corrected for correlations only ĝc.

As a first test of the efficacy of the asymmetry correction for

higher-dimensional RFs, we used the LN model to simulate

responses to the time-series of natural intensities (shown again in

figure 2a, along with its two-point intensity distribution in

figure 2b), but for these simulations the RF was chosen to have

a biphasic shape that is typical of temporal RFs in early sensory

systems. We repeated the simulation while increasing the

dimensionality of the stimulus from m = 5 to a more realistic value

of m = 32 (representing, for example, temporal summation of 32

frames of a spatially uniform visual stimulus).

To explicitly examine the bias in the RF estimate due to

stimulus asymmetries and the efficacy of the asymmetry

correction, we compared the actual RF g to the RF estimated

from simulated responses to the natural stimulus after correcting

for correlations only ĝc and after correcting for both correlations

and asymmetries ĝcs with optimal values for h and w. Note that for

all of the simulations shown in figure 2, the best estimates of ĝcs

and ĝc were obtained when all principal components of the

stimulus were used (e = 1 and m* = m) and, thus, only results

obtained with these values are shown.

The results for an RF with m = 5 are shown in figure 2c. The

color image shows the bias in ĝcs (defined as the mean squared

error between g and ĝcs) for different values of h and w. The

estimate of the RF with the lowest error (denoted by the star) was

obtained when h was set such that the stimuli with the smallest

78% of norms were included in the estimate and the maximum

asymmetry correction was set to w= 103. For these optimal values

of h and w, the RF estimate ĝcs (shown in cyan) is identical to the

actual RF (shown in green). The error in the estimate increases

when the RF estimate is corrected for correlations only (h= ‘ and

Figure 2. Temporal RF estimates from simulated responses to natural stimuli. a) 60 sample segment of a time-series of natural intensities
taken from the database of van Hateren [16]. b) Two-point distribution of intensities in the natural stimulus. c) Color image showing the (log10) mean
squared error between the actual RF used to simulate responses of the LN model to the natural stimulus and RF estimates corrected for stimulus
correlations and asymmetries ĝcs computed from the simulated responses with different values of h, defined in terms of the % of stimuli that were
included in the RF estimate, and w, the maximum value for the asymmetry correction. The minimum error is denoted by the star, and the error
corresponding to correction for correlations only is denoted by the circle. The actual RF (m = 5) used to simulate the LN model responses to the
natural stimulus is shown (green), along with the RF estimated from simulated responses after correction for stimulus correlations only ĝc (blue) and
correction for stimulus correlations and asymmetries ĝcs with optimal values of h and w (cyan). d,e) Results for m = 15 and m = 25, presented as in c. f)
Mean squared error between actual RFs and RF estimates ĝc (blue) and ĝcs with optimal values of h and w (cyan) for different values of m.
doi:10.1371/journal.pone.0003060.g002

Estimating Receptive Fields
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w= 1, denoted by the circle) and the RF estimate ĝc (shown in

blue) is biased. For m = 5, the bias in ĝc due to stimulus

asymmetries is small, but this bias increases as the dimensionality

of the RF increases (shown for m = 15 in figure 2d and m = 25 in

figure 2e) and the asymmetry correction substantially reduces this

bias. A summary of the bias in ĝc and the efficacy of the

asymmetry correction across a range of values for m is shown in

figure 2f. The bias in ĝc (blue) increases steadily as the

dimensionality of the stimulus increases, while the bias in ĝcs

(cyan) increases much more slowly.

Spatial receptive field estimation from simulated
responses to natural stimuli

When next tested the efficacy of the asymmetry correction for

even higher-dimensional RFs. We used the LN model to simulate

responses to a series of natural images taken from the database of

van Hateren [33]. For these simulations, the RF g was defined by

m points in space with a center-surround structure that is typical of

spatial RFs in the early visual pathway and the stimulus si was

defined as

si~

si1

si2

..

.

sim

2
66664

3
77775

where sij is the intensity of pixel j in image i. Several example

images are shown in figure 3a. We again repeated the simulation

while increasing the dimensionality of the RF from m = 81 to

m = 625, and the natural images were resized to achieve the

desired dimensionality.

The results for an RF with m = 81 are shown in figure 3b. In this

example, the estimate of the RF with the lowest error (denoted by

the star) was obtained when all principal components of the

stimulus were used (e = 1 and m* = 81) and h was set such that the

stimuli with the smallest 80% of norms were included in the

estimate and the maximum asymmetry correction was set to

w= 108. The error in the estimate increases when the RF estimate

is corrected for correlations only (h= ‘ and w= 1, denoted by the

circle). The RF estimate ĝc that is corrected for correlations only

has a weaker surround than the actual RF g, while the RF estimate

corrected for both correlations and asymmetries ĝcs and the actual

RF are similar.

Figure 3c shows the results for a high-dimensional RF with

m = 576. In this example, the estimate of the RF with the lowest

error was obtained when only the principal components necessary

to explain 73% of the variance in the stimulus were used (e = 0.73

and m* = 75; in this example, these values were optimal for both

ĝcs and ĝc), with all stimuli included in the estimate and the

maximum asymmetry correction set to w= 105. When only

correlations are corrected, the RF estimate ĝc has a strong bias

evidenced by the large negative values at the bottom of the RF and

correcting for both correlations and asymmetries in ĝcs reduces

this bias. A summary of the bias in ĝc and the efficacy of the

asymmetry correction across a range of values m is shown in

figure 3d. As with the temporal RF examples shown in figure 2,

the bias in the spatial RF estimate after correcting for correlations

only ĝc (blue) increases steadily as the dimensionality of the

stimulus increases, while the bias in the estimate after correcting

for both correlations and asymmetries ĝcs (cyan) increases much

more slowly.

Temporal receptive field estimation from experimental
responses to natural stimuli

The above results demonstrate that correcting for stimulus

asymmetries can reduce the bias in an RF estimate computed from

simulated responses to a natural stimulus, even for relatively high-

dimensional RFs. However, under experimental conditions, the

data available for RF estimation can be limited to a relatively small

number of noisy observations of the neural response. To

determine whether explicit correction for stimulus asymmetries is

sufficient to provide accurate RF estimates under such conditions,

we recorded retinal responses to the same natural time-series used

in the simulated examples described in figure 2 (shown again in

figure 4a). The spatially uniform stimulus was projected onto an

isolated salamander retina and action potentials from ganglion

cells were recorded extracellularly. The methods for these

experiments have been described in detail previously [34].

The experimental responses were used to estimate RFs with

correction for stimulus correlations and asymmetries as described

above. Because this is an experimental situation, we do not have

access to the actual RF with which to compare our estimate.

Instead, we evaluate the quality of the RF estimates by measuring

their ability to predict experimental responses to novel natural

stimuli. First, the stimulus/response data for each neuron are

divided into ‘training’ and ‘testing’ segments to avoid contamina-

tion of the evaluation from ‘overfitting’ the noise in the response.

Next, the training data are used to estimate the RF and determine

the optimal value of e for ĝc, and the optimal values of e, h, and w
for ĝcs. The optimal parameter values are chosen by using the RF

estimate in the LN model to simulate responses to the training

stimulus (with f (?) also estimated from the training data as in [20])

and maximizing the predictive power measured as the correlation

coefficient between the simulated and actual responses. Finally, the

resulting RF estimates are used to simulate responses to the testing

stimulus and the predictive power between the simulated and

actual responses is measured. To provide an additional benchmark

for comparison, we also recorded responses of the same cells to a

spatially uniform Gaussian white noise stimulus and computed the

reverse correlation RF estimate ĝ from these responses.

The results for an example OFF-center cell are shown in

figures 4b and c with m = 18. For this cell, the estimate of the RF that

had the highest predictive power for the training data was obtained

when all principal components of the stimulus were used (e = 1 and

m* = 18), with h set such that the stimuli with the smallest 77% of

norms were included in the estimate and the maximum asymmetry

correction set to w= 103. When only correlations are corrected, the

predictive power of the RF estimate for the training data is

decreased and differences between ĝcs (cyan) and ĝc (blue) are

evident in the later phases of the RF estimates. Additionally, both

ĝcs and ĝc are substantially different from the RF estimated from

responses to the white noise stimulus ĝ.

To evaluate the quality of the different RF estimates, we

measured their predictive power for the testing data as described

above. As shown in figure 4d for a sample of 10 cells, the

predictive power of the RFs estimated from responses to the

natural stimulus with correction for stimulus correlations and

asymmetries ĝcs is significantly larger than that of the RFs

estimated from responses to the natural stimulus with correction

for stimulus correlations only ĝc, as well as that of the RFs

estimated from responses to the white noise stimulus ĝ (paired t-

tests, p,0.01). On average, the predictive power of ĝcs was 5%

larger than that of ĝc and 11% larger than that of ĝ, with increases

for individual cells as large as 13% and 28%, respectively. This

suggests that the RFs with correction for stimulus correlations and

asymmetries do indeed provide a more accurate description of
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Figure 3. Spatial RF estimates from simulated responses to natural stimuli. a) Three example natural images taken from the database of
van Hateren [33]. b) Color image showing the mean squared error between the actual RF used to simulate responses of the LN model to the natural
stimulus and RF estimates corrected for stimulus correlations and asymmetries ĝcs computed from the simulated responses with different values of e,
the fraction of the variance explained by the principal components of the stimulus used in computing the RF estimate, h, defined in terms of the % of
stimuli that were included in the RF estimate, and w, the maximum value for the asymmetry correction. The minimum error is denoted by the star,
and the error corresponding to correction for correlations only is denoted by the circle. The actual RF (m = 81) used to simulate the LN model
responses to the natural stimulus is shown, along with the RF estimated from simulated responses after correction for stimulus correlations only ĝc

with an optimal value of e, and correction for stimulus correlations and asymmetries ĝcs with optimal values of e, h, and w. c) Results for m = 576,
presented as in b. d) Mean squared error between actual RFs and RF estimates ĝc (blue) and ĝcs with optimal values of h and w (cyan) for different
values of m.
doi:10.1371/journal.pone.0003060.g003
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temporal processing in retinal ganglion cells than the RFs

estimated with correction for stimulus correlations only and that

the explicit correction for stimulus asymmetries can be effective in

the analysis of experimental responses to natural stimuli.

Discussion

We have described a method for correcting the bias in reverse

correlation RF estimates that arises from the asymmetries typical

of natural stimuli. Using simulated neural responses, we have

illustrated how stimulus asymmetries can bias reverse correlation

RF estimates (even for uncorrelated stimuli) and demonstrated

how explicit correction for spherical asymmetries can remove this

bias. We have also shown that this method is suitable for

estimating RFs under experimental conditions using retinal

responses to natural stimuli. Below, we discuss the limitations of

the asymmetry correction method presented here and consider

other methods for RF estimation from responses to natural stimuli.

Limitations of the asymmetry correction
The primary limitation of the asymmetry correction method, at

least in theory, is that its efficacy decreases as the stimulus

dimensionality increases. Because the asymmetry correction

method requires that responses to stimuli with low probability are

weighted heavily in the RF estimate, the stability of the correction

suffers as the stimulus dimensionality (and, thus, for natural stimuli,

the percentage of stimuli with low probability) is increased. For

high-dimensional stimuli, this problem is mitigated somewhat by

using only a subset of the principal components of the stimulus in

computing the transformation that corrects the RF estimate for

second-order stimulus correlations. We further addressed this

problem by introducing two additional parameters, h and w, into

the asymmetry correction that limit the set of stimuli used in the RF

estimate and the maximum value of the asymmetry correction. It is

important to note that if the system is indeed well described by the

LN model (the assumption upon which most RF-based analyses are

based), then the exclusion of any particular subset of stimuli will not

bias the RF estimate. Furthermore, as long as the range of values of

h and w that are tested include h= ‘ and w= 1, then the resulting

RF estimate will be at worst equivalent to the RF estimate that is

corrected for correlations only.

The asymmetry correction method presented here is only useful

when the neural response can be accurately described by the

standard LN model. However, there are many sensory neurons

with nonlinear response properties for which the standard LN

model is inadequate. Several recent studies have used spike-

triggered covariance (STC) techniques to estimate RFs for more

sophisticated LN models containing multiple linear filters with

nonlinear interactions (for review, see [18,22,35]). These tech-

niques have allowed for the characterization of neural responses

that are incompatible with the standard LN model, such as motion

sensitive cells in the fly lobula plate and complex cells in the

primary visual cortex [3,4,36,37]. The correlations and asymme-

tries in natural stimuli can also bias estimates of the STC (indeed,

the symmetry requirements for unbiased STC estimates are

stricter than those for RF estimates in the standard LN model

[18,21]). It is possible that the explicit asymmetry correction

introduced here could be extended to provide unbiased STC

estimates from responses to natural stimuli.

The standard LN model also assumes that the structure of the

RF is time-invariant. While this assumption is appropriate for

many sensory neurons under stationary stimulus conditions, the

natural environment can be highly nonstationary and changes in

the statistical properties of the stimulus can evoke adaptive

changes in neural response properties (for reviews, see [38,39]).

This adaptation is reflected in significant changes in the structure

of the RF and, as a result, the standard LN model with a time-

invariant RF is often insufficient to describe neural responses to

nonstationary stimuli. To track adaptive changes in RF structure,

we have previously extended the least-squares approach for RF

estimation (see equation 2) to estimate time-varying RFs

[30,31,40]. As described above, the least-squares approach

corrects RF estimates for the bias introduced by stimulus

correlations, but not for the bias introduced by stimulus

asymmetries. The asymmetry correction method developed here

could also be extended to estimate time-varying RFs, but the

stability of the correction may depend strongly on the degree of

nonstationarity in the distribution of stimulus intensities.

Figure 4. Temporal RF estimates from experimental responses to natural stimuli. a) 60 sample segment of a time-series of natural
intensities taken from the database of van Hateren [16]. b) Color image showing the correlation coefficient (CC) between the experimental responses
of a retinal ganglion cell to the ‘training’ segment of the natural stimulus and the responses predicted by RF estimates (m = 18) corrected for stimulus
correlations and asymmetries ĝcs computed from the experimental responses with different values of h, defined in terms of the % of stimuli that were
included in the RF estimate, and w, the maximum value for the asymmetry correction. The maximum CC is denoted by the star, and the CC
corresponding to correction for correlations only is denoted by the circle. c) The RF estimated from experimental responses to the natural stimuli after
correction for stimulus correlations only ĝc is shown (blue), along with the RF estimated from experimental responses to the natural stimuli after
correction for stimulus correlations and asymmetries ĝcs with optimal values of h and w (cyan) and the RF estimated from experimental responses of
the same cell to white noise stimuli using reverse correlation ĝ (black). d) Correlation coefficient between predicted and actual firing for responses to
the ‘testing’ segment of the natural stimulus for RF estimates ĝc, ĝcs with optimal values of h and w, and ĝ for a sample of 10 retinal ganglion cells.
Crosses indicate sample mean and standard deviation.
doi:10.1371/journal.pone.0003060.g004
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Other methods for receptive field estimation from
responses to natural stimuli

In a number of studies in both the visual and auditory systems,

RFs have been estimated from responses to natural stimuli and the

bias due to second-order stimulus correlations has been corrected

using a least-squares approach (equation 2, or some variant

thereof) [3,4,9,11,27–31]. Detailed descriptions and analyses of

this approach have also been published [21,23–25]. In the studies

cited above, the biases in the RF estimates due to stimulus

asymmetries were not explicitly corrected. However, in some of

these studies, the authors attempted to quantify the bias in the RF

estimates introduced by stimulus asymmetries by simulating

responses to natural stimuli using an LN model with a known

RF and comparing the actual RF to the RF estimated from the

simulated responses [3,4,31,41]. Because the actual and estimated

RFs were similar, the authors concluded that the bias in the RF

estimates introduced by stimulus asymmetries was minimal. In

contrast, a similar comparison between RF estimates corrected for

correlations only and actual RFs in our results revealed large

differences (see, for example, figure 2e) and another recent

simulation study found similar results [26]. Taken together, these

results imply that the bias in RF estimates introduced by stimulus

asymmetries is dependent on the specific statistical properties of

the stimulus and suggest that these effects should be investigated

explicitly in each new experimental context.

Recently, several new techniques for RF estimation have been

developed that use gradient descent methods to produce RF

estimates that are independent of both stimulus correlations and

asymmetries. One set of techniques minimizes the same cost

function used in reverse correlation RF estimates, the mean

squared error between the predicted and actual responses [32,42],

while another set maximizes some variant of the mutual

information between the stimulus and the predicted response

[21,43,44]. Both sets of techniques have already been used

successfully to estimate high-dimensional RFs under experimental

conditions. The only potential drawback to these approaches is

that they require a search algorithm to determine the optimal RF

and it may be difficult to avoid local optima. Another promising

new approach involves maximum likelihood estimation of a

parametric LN model [45]. While this approach also requires a

search algorithm to find the optimal parameters, it takes advantage

of the fact that, for certain forms of the LN model, the likelihood

surface is convex, allowing for an efficient search. This approach

has been used successfully to characterize retinal ganglion cell

responses to white noise stimuli [46], but has not yet been tested

with natural stimuli.

While not explicitly biased by asymmetries in the stimulus, RFs

estimated using gradient descent methods will, by definition, be

most successful in minimizing or maximizing the relevant cost

function for predicted responses to those stimuli that occur most

frequently. Thus, these estimates are still influenced by the

probability distribution of the stimulus and it is possible that they

could also benefit from a correction similar to the asymmetry

correction described here in which the contribution of each

response to the cost function is weighted by the probability of the

corresponding stimulus.
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