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Abstract

In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing
under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior
colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes
a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show
that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of
overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit
differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural
response in a manner consistent with the principles of efficient coding.
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Introduction

The efficient coding hypothesis suggests that sensory systems

should be optimized to process signals that are typical of those

experienced in the natural environment [1]. Indeed, it has been

shown that auditory neurons code sounds with naturalistic

statistics more efficiently than those with artificial statistics [2–4]

and that the response properties of auditory neurons are matched

to the statistics of natural sounds [5,6]. It has been further

hypothesized that adaptive mechanisms serve to maintain this

efficient coding under changing stimulus conditions by altering the

response properties of the system in response to changes in the

statistical properties of the relevant stimulus itself or in the context

in which the stimulus is presented [7].

The most widely studied adaptive mechanisms are those that

modulate temporal processing in the retina (for review, see Meister

and Berry [8]). Numerous studies have characterized the

functional effects of these mechanisms, demonstrating, for

example, that a decrease in the mean luminance or contrast of

the visual stimulus evokes a change in the dynamics of temporal

receptive fields (RFs) that corresponds to a change from bandpass

to lowpass tuning for temporal frequency [9,10]. Analogous

changes in temporal processing have also been reported in the

auditory system, where a decrease in the mean intensity or

variance of the amplitude modulations (AMs) in the auditory

stimulus or the addition of a broadband noise mask can evoke a

change in the dynamics of temporal RFs that corresponds to a

change from bandpass to lowpass tuning for modulation frequency

[11–14].

Most studies of adaptive temporal processing are based on

responses to artificial stimuli such as gratings (or pure tones) and

broadband noise. However, if sensory systems are indeed

optimized to process stimuli that are typical of the natural

environment, as suggested by the efficient coding hypothesis, then

the functional consequences of adaptive processing must be

evaluated by studying responses to natural stimuli directly. In this

study, we investigate the ability of the mammalian auditory system

to adapt its temporal processing strategy under natural stimulus

conditions by analyzing responses to vocalization stimuli with and

without additional ambient noise. Vocalizations and ambient

noises typically have different statistical properties [15,16] and we

hypothesized that the auditory system could exploit these

differences and modify its temporal processing strategy to maintain

efficient coding. Using a combination of experimental and

simulated responses, we demonstrate that the addition of ambient

noise to vocalization stimuli does indeed evoke dramatic changes

in the temporal processing strategy of neurons in the auditory

midbrain, and that these changes serve to increase the information

in the neural response.

Results

Temporal properties of vocalizations and ambient noises
Before testing the ability of the auditory system to adapt its

strategy for the temporal processing of vocalizations in the

presence of ambient noise, we first investigated the statistical

properties of these two classes of sounds. We compiled two

ensembles of sounds containing representative examples of

vocalizations (animal calls, human speech, bird songs) and

sustained ambient noises (wind, vacuum cleaner, etc.). The

spectrograms of several example sounds are shown in figures 1a

and b.

Because we were interested in temporal processing, we focused

our analysis on the AMs within narrow carrier frequency bands, as

shown for the final spectrogram in each ensemble. We computed

the amplitude distributions and power spectra of the AMs for a

range of carrier frequency bands for each sound. The amplitude

distributions and power spectra of the AMs within the frequency

band around 6.5 KHz for the example sounds are shown in

figures 1c–f. It is clear that the AMs of vocalizations and ambient

noises have different statistical properties. As shown in figures 1c

and d, the distributions of the AMs in the vocalizations decrease
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monotonically with increasing amplitude, while the distributions of

the AMs in the ambient noises have a central peak. Furthermore,

as shown in figures 1e and f, the power spectra of the AMs in the

vocalizations fall off with increasing frequency (with the ‘1/f’

power law that is typical of natural sounds [15,17,18], indicating

the presence of strong correlations, while the AMs in the ambient

noises have approximately equal power at all frequencies.

To provide a characterization of the AMs that are typical of

vocalizations and ambient noises, we averaged the distributions

and power spectra of the AMs in each carrier frequency band

Figure 1. Temporal properties of vocalizations and
ambient noises. a,b) Spectrograms of example sounds
from the vocalization (Mexican hairy porcupine, human,
and common nightingale) and ambient noise ensembles
(wind, vacuum cleaner, rain), with the AMs in nightingale
song and rain in the frequency band around 6.5 KHz shown
below. c,d) The amplitude distributions of the AMs in the
sounds shown in a and b in the carrier frequency band
around 6.5 KHz. Colors correspond to the boxes in the
upper righthand corner of the spectrograms in a and b.
AMs were normalized to have a minimum amplitude of 0
and a maximum amplitude of 1. e,f) The power spectra of
the AMs in the sounds shown in a and b in the carrier
frequency band around 6.5 KHz, with the gray band
denoting the 20–120 Hz frequency range. AMs were
normalized as in c and d. g) The parameter values that
provided the optimal fits for the average amplitude
distribution of the AMs in each sound ensemble for a
range of carrier frequencies (exponential distribution for
vocalizations, Rayleigh distribution for ambient noises).
Each sound ensemble was divided into 10 segments, and
the error bars in panel g denote one standard deviation of
the distribution of optimal parameter values across these
segments. h) The value of a that provided the best fit of the
function 1/f a to the average power spectra of the AMs in
each sound ensemble in the 20–120 Hz frequency range for
a range of carrier frequencies.
doi:10.1371/journal.pone.0001655.g001
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across all sounds in each ensemble. To quantify the changes in the

statistical properties of the AMs in each ensemble across carrier

frequency, we fit the ensemble-averaged amplitude distributions and

power spectra with parametric functions. The parameter values that

provided the optimal fits of the amplitude distributions (exponential

for vocalizations, Rayleigh for ambient noises) for a range of carrier

frequency bands are shown in figure 1g. The optimal parameter

values were relatively constant across the range of carrier frequencies

between 2.5 and 17.5 KHz, with average values of 0.015 for

vocalizations and 0.1 for ambient noises. The ensemble-averaged

power spectra were fit with the function 1/f a in the 20–120 Hz

frequency range (denoted by the gray band in figures 1e and f) and

the values of a that provided the best fit of this function for a range of

carrier frequency bands are shown in figure 1h. As with the optimal

parameters for the amplitude distributions, the average values of a
(related to the slope of the power spectra on logarithmic axes) were

relatively constant across carrier frequencies, with average values of

1.4 for vocalizations and 0.1 for ambient noises.

Temporal processing of vocalization stimuli depends on
stimulus context

Based the above results, we created modulation signals with

amplitude distributions and power spectra that were typical of the

sounds in our vocalization and ambient noise ensembles (i.e. the

vocalization signal had an exponential amplitude distribution with

parameter value 0.015 and its power spectrum was 1/f 1.4, while

the ambient noise signal had a Rayleigh amplitude distribution

with parameter value 0.1 and its power spectrum was 1/f 0.1). We

used these modulation signals to create two stimuli, denoted V and

VN, with which we could characterize temporal processing of

vocalization stimuli alone and in the presence of ambient noise, as

shown in figure 2a.

The V stimulus consisted of a pure tone at a neuron’s preferred

carrier frequency with an amplitude envelope that was modulated

by the vocalization signal. The VN stimulus consisted of the V

stimulus added to broadband noise that was modulated by the

ambient noise modulation signal. The signal to noise ratio (SNR)

of the VN stimulus was 210 dB.

We made single-unit extracellular recordings of the responses to

these two stimuli in the central nucleus of the inferior colliculus

(IC) of anesthetized gerbils. The responses of two typical cells to

repeated presentations of a short segment of the V and VN stimuli

are shown in figure 2b. Across a population of cells for which we

recorded responses to non-repeating 40 second segments of the V

and VN stimuli, the addition of noise had no consistent effect on

mean firing rate, as shown in figure 2c (V: 39.1616.6 Hz, VN:

36.6619.1 Hz, paired t-test, p.0.1, n = 63). However, across a

Figure 2. Auditory responses to vocalization stimuli with and without ambient noise. a) A schematic illustration of the two stimulus
conditions used in this study: the vocalization stimulus alone (V), and the vocalization stimulus with ambient noise (VN). The V stimulus was a pure
tone at the neuron’s preferred frequency that was modulated by a signal with the same amplitude distribution and power spectrum as the AMs in
the ensemble of vocalizations. The VN stimulus was the V stimulus added to broadband noise that was modulated by a signal with the same
amplitude distribution and power spectrum as the AMs in the ensemble of ambient noises. The SNR in the VN stimulus was 210 dB. The gray lines
represent the actual stimulus waveform and the black lines represent the AMs of the vocalization stimulus. b) The responses of two typical cells to
repeated presentations of the V and VN stimuli. For each repetition of the VN stimulus, the vocalization signal was the same, while the ambient noise
signal was different. The preferred frequencies of the cells were 2.5 KHz and 16.7 KHz, respectively. The boxes indicate the colors used to identify the
mean firing rates and SNRs of these two cells in the scatter plots shown in c and d. c) The mean firing rates for a population of cells during non-
repeating 40 second segments of the V and VN stimuli. The crosses denote the population mean6one standard deviation. The blue and green circles
correspond to the cells for which responses are shown in b. d) The SNRs of the responses of a subset of cells to short repeated segments of the V and
VN stimuli (3 seconds, 100 repetitions). SNR was calculated for firing rate responses in 1 ms bins as described in the Materials and Methods.
doi:10.1371/journal.pone.0001655.g002
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subset of cells for which we recorded responses to repeated

3 second segments of the V and VN stimuli (for VN stimuli, each

repeat used the same vocalization signal and a different ambient

noise signal), the addition of noise caused a 49% decrease in the

reliability of the response (defined as SNR for firing rate in 1 ms

bins, see Materials and Methods), as shown in figure 2d (V:

0.4560.1, VN: 0.2360.06, paired t-test, p,0.001, n = 23).

To characterize the processing of the AMs in the V and VN

stimuli, we estimated temporal receptive fields (RFs). The

temporal RF is a linear filter relating the AMs in the stimulus to

the neural response (i.e. convolution of the modulation signal with

the temporal RF gives a prediction of the neural response). It is

important to note that because the V and VN stimuli contain

strong correlations (their power spectra are not flat), standard

techniques for estimating temporal RFs (e.g. spike-triggered

averaging or reverse correlation) can produce a biased result. To

correct this bias, we used a least-squares technique which produces

RF estimates that are independent of the second-order correlations

in the stimulus. We also perform simulations to verify that the RF

estimates were not influenced by higher order correlations of the

specific stimuli used in this study (see Materials and Methods).

The temporal RFs of a typical cell during stimulation with the V

and VN stimuli in figure 3a. The V RF (black) exhibits fast,

biphasic dynamics when coding the vocalization stimulus alone,

while the addition of noise evokes a change to the slower, more

monophasic dynamics of the VN RF (red). As shown in figure 3b,

these changes are also evident in the frequency domain

representation of the temporal RF, the modulation tuning function

(MTF), which reflects the response of the neuron to different

modulation frequencies: the V RF has bandpass modulation

tuning (black), while the tuning of the VN RF is lowpass (red). The

effect of the addition of noise to the vocalization stimulus on

Figure 3. Temporal processing of vocalization stimuli with and without ambient noise. a) The temporal RFs estimated from responses to
the V (black) and VN (red) stimuli for a typical cell. The preferred frequency of the cell was 12.7 KHz. The error bars represent 95% confidence bounds.
The RFs were normalized to have the same peak value for plotting. b) The MTFs corresponding to the RFs in a. MTFs were obtained by computing the
power spectrum of the RF. Before computing the power spectrum, RFs were normalized such that the variance of the result of the convolution of the
RF with the vocalization signal was one. c,d) RFs and MTFs for two additional cells with preferred frequencies of 2.5 and 12.5 KHz, respectively. RFs
and MTFs were normalized as described in a and b. e) The area above the MTF corresponding to the attenuation of low frequencies was measured on
logarithmic axes, from the lowest non-zero frequency measured (20 Hz) to the peak. Before calculation of the LF area, the MTF was normalized to
have a peak value of one. The LF area was zero for those neurons whose MTFs were monotonically decreasing. f) The LF area of the V and VN MTFs for
the population of 63 cells. The crosses denote the population mean6one standard deviation. The colored circles correspond the RFs and MTFs
shown in a–d as indicated by the colored boxes. g) A histogram showing the percent changes between the LF areas in f.
doi:10.1371/journal.pone.0001655.g003
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temporal processing varied widely, with the MTFs of many

neurons changing from bandpass to pure lowpass (figures 3a, b,

and c), while the MTFs of other neurons did not change at all

(figure 3d). We quantified these effects by measuring the area

above the MTF (on logarithmic axes) that corresponds to the

attenuation of low frequencies, as shown in figure 3e. Across the

population, the LF areas of the VN MTFs were significantly

smaller than those of the V MTFs, as shown in figure 3f (paired t-

test, p,0.001, n = 63). The average decrease in MTF LF area was

60% (see histogram in figure 3g), indicating that, as a population,

IC neurons exhibit a strong shift from bandpass modulation tuning

under noise-free conditions to lowpass modulation tuning with the

addition of noise.

To determine the time-course of the observed changes in

temporal processing, we recorded responses while the stimulus was

repeatedly switched between V and VN, and estimated temporal

RFs at a range of times relative to noise onset or offset. A

schematic illustration of the stimulus, which switched between V

and VN every 3 seconds, is shown in figure 4a. Figure 4b shows

the temporal RFs of a typical cell estimated just before and just

after noise onset and offset. The RFs estimated just after noise

onset (green) and 3 seconds after noise onset (red) are nearly

identical, as are the RFs estimated just after noise offset (blue) and

3 seconds after noise offset (black). This is also evident in the

MTFs shown in figure 4c, as the MTFs just after noise onset

(green) and 3 seconds after noise onset (red) are lowpass, while the

MTFs estimated just after noise offset (blue) and 3 seconds after

noise offset (black) are bandpass. As shown in figure 4d, these

results were consistent across a sample of 6 cells, as the LF area of

the MTFs changed immediately (within 200 ms) following noise

onset and offset and remained relatively constant until the next

switch.

We also examined the effects of overall stimulus intensity on the

observed changes in temporal processing. We estimated temporal

RFs from responses to the V and VN stimuli across a range of

overall stimulus intensities, as shown for a typical cell at intensities

of 25, 30, and 40 dB SPL above threshold in figures 5a–c. The

increase in the overall intensity of the stimulus evokes an increase

in the LF areas of both the V and VN MTFs, as shown in figure 5d.

Accordingly, the magnitude of the decrease in the LF area of the

MTF evoked by the addition of noise to the vocalization increased

as the overall intensity of the stimulus increased. However, for a

sample of 8 cells, the percent decrease in the MTF LF area evoked

by the addition of noise remained relatively constant across a

range of intensities, as shown in figure 5e. We also found that the

observed changes in temporal processing were robust to changes in

the spectral properties of the carrier of the vocalization stimulus, as

shown in Figure S1.

Changes in temporal processing promote efficient
coding

The principles of efficient coding suggest that adaptive

mechanisms should modulate a tradeoff between smoothing

(increasing the SNR in the response) and whitening (reducing

redundancy), with the optimal balance dependent on the overall

SNR of the stimulus [7]. Viewed in this context, the results shown

in figure 3 appear to capture the system at the two opposite sides of

this tradeoff. Bandpass filtering in the V RF reduces the

redundancy of the correlated (1/f) AMs in the vocalization

stimulus by whitening at low frequencies, while lowpass filtering in

the VN RF increases SNR under noisy conditions by preserving

power at low modulation frequencies where the power in the

vocalization stimulus is largest. To analyze the relative effective-

ness of these two strategies, it is necessary to compare the

responses to the vocalization stimulus with and without ambient

noise when the system is using each processing strategy. Because of

the fast time-course of the changes in temporal processing that we

observe, as shown in figure 4, such a comparison cannot be made

experimentally. Instead, we use a simple model in which the AMs

in the stimulus are passed through either the V or VN RF for a

particular cell, and the output of the RF is used to drive a leaky,

noisy integrate and fire (IF) spike generator as shown in figure 6a.

Figure 6b shows the V and VN RFs for two typical cells, and

figures 6c and d show the actual responses of the cells to repeated

presentations of the V and VN stimuli, along with the

corresponding predicted responses of the model (with the temporal

RF matched to the stimulus condition). For the subset of cells for

which the model could be cross-validated on responses to novel

stimuli (n = 23), the predictions were highly accurate, with

correlation coefficients between predicted and actual responses

of 0.6260.09 for the V stimulus and 0.6660.07 for the VN

stimulus (for firing rate in 2 ms bins).

We first compared the responses of the model with the V and VN

RFs to the vocalization stimulus alone. To ensure that the

differences in the responses of the model with the V and VN RFs

were the result of differences in the dynamics of the temporal RFs,

the RFs were normalized such that their outputs had the same

variance for a given stimulus condition. The spike trains produced

by the model in response to repeated stimuli can be separated into

signal (average response over all trials) and noise (deviation of

individual trial from average response) components, as shown in 7a

for a typical cell. With the only noise in the system being that of the

IF mechanism, the power in the signal (thick lines) and noise (thin

lines) in the responses are approximately equal at low frequencies.

As expected from the relative shapes of the power spectrum of the

AMs in the vocalization stimulus and the V and VN MTFs (the

power spectrum of the signal in the response is related to the

product of the stimulus power spectrum and the MTF), the response

of the model with the V RF has reduced redundancy (the signal

power is relatively flat at low frequencies), and the response of the

model with the VN RF has an increased SNR at low frequencies.

To quantify the efficiency of these responses, we computed the

mutual information between the stimulus and response using the

direct method, as shown in figure 7b. Across the sample of cells,

the information rates resulting from processing in the V RF are

significantly higher than those resulting from processing in the VN

RF (paired t-test, p,0.01, n = 23), with increases as large as 33.2%

and an average increase of 10.469.4% (see histogram in figure 7c).

This result indicates that, in the absence of ambient noise,

redundancy reduction through bandpass filtering in the V RF is,

indeed, the preferred strategy. When the vocalization stimulus is

combined with ambient noise, the shapes of the signal and noise

power resulting from processing in the V and VN RFs remain the

same, but the overall SNR in the response decreases, as shown in

figure 7d. Because of this decrease in SNR, the information rates

resulting from processing in the VN RF are now significantly

higher than those resulting from processing in the V RF (paired t-

test, p,0.01, n = 23, see figure 7e), with increases as large as

39.6% and an average increase of 16.4610.5% (see histogram in

figure 7f). This result suggests that, under noisy conditions,

increasing SNR through lowpass filtering in the VN RF is the

preferred strategy. Thus, in processing vocalization stimuli with

and without noise, the responses of the model have a higher

information rate when the RF in the model is matched to the

stimulus condition, suggesting that the context-dependent changes

in temporal processing that we observe may serve to promote

efficient coding by increasing the information in the neural

response.
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Discussion

We have shown that the temporal processing strategy employed

by neurons in the auditory pathway is dependent on stimulus

context. In response to the addition of noise to vocalization stimuli,

we observed a change in the dynamics of the temporal RF that

corresponds to a change from bandpass to lowpass tuning for

AMs. These context-dependent changes in temporal processing

occurred within a few hundred milliseconds of noise onset or

offset, and were evident across a range of overall stimulus

intensities. Using a simple model, we illustrated how these

context-dependent changes in temporal processing enhance neural

responses in a manner consistent with the principles of efficient

coding by exploiting differences in the low-order statistical

properties of vocalizations and sustained ambient noises.

It should be noted that we refer to the phenomena observed

here as ‘adaptation’ not because of the mechanisms underlying it

(which are not yet known), but because of its functional

consequences: the temporal processing strategy (as represented

by the temporal RF or MTF) changes in response to a change in

the context of the stimulus. This is consistent with previous studies

of adaptive processing in both the auditory and visual systems

which report similar changes in temporal RFs in response to

changes in the statistics of the relevant stimulus itself, for example,

changes in the mean or variance of the stimulus [19,20]. Unlike

other forms of adaptation with observable temporal dynamics

[21,22], the phenomena observed here and in the studies cited

above were evident almost immediately following a change in the

statistics of the stimulus, making it impossible to determine (with

RF based analyses) whether they reflect a truly adaptive

mechanism with an extremely fast time-course or different modes

of operation of a static (non-adaptive) nonlinear system. Regardless

of whether or not the phenomena observed here are adaptive in a

mechanistic sense, our results provide compelling evidence that the

system is at least adaptive in a functional sense, as the changes in

temporal processing evoked by a change in stimulus context

appear to promote efficient coding.

Relation to previous studies of adaptive temporal
processing

Our results demonstrate that the addition of ambient noise to

vocalization stimuli can evoke a change in the dynamics of the

temporal RF that corresponds to a change from bandpass to

lowpass tuning for modulation frequency. Similar phenomena

were observed by Rees and colleagues as a result of the addition of

a broadband noise masker to an amplitude modulated pure tone

stimulus in the IC of the guinea pig and rat [13,23]. However, our

results differ from those of Rees and colleagues in several

important ways. We report changes in modulation tuning in

Figure 4. Rapid changes in temporal processing are evoked by
the onset or offset of ambient noise. a) A schematic illustration of
the stimulus, which switched between V and VN every 3 seconds. The
gray line represents the actual stimulus and the black line represents
the vocalization modulation signal. b) The temporal RFs of a typical cell
estimated just before and just after noise onset and offset. The

r

preferred frequency of the cell was 6.7 KHz. The error bars represent
95% confidence bounds. The RFs were normalized to have the same
peak value for plotting. The colors of the RFs correspond to the time
intervals marked in a. c) The MTFs corresponding to the RFs in b. Before
computing the MTFs, RFs were normalized such that the variance of the
result of the convolution of the RF with the vocalization signal was one.
d) The LF area of the MTFs for a sample of 6 cells, estimated at 200 ms
intervals after noise onset and offset. The colored circles correspond to
the time intervals marked in a. The results for each cell were normalized
such that the LF area just before noise offset was 0 and the LF area just
before noise onset was 1. The error bars represent one standard
deviation of the distribution of normalized LF areas across the sample of
cells.
doi:10.1371/journal.pone.0001655.g004
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response to changes in the context of natural stimuli, rather than

the addition of broadband white-noise to a white-noise modulated

pure tone. In the study of adaptive temporal processing, the use of

natural stimuli is essential in order to understand the functional

consequences of the observed phenomena. Specifically, our results

suggest that because of the differences in the modulation spectra of

the ‘signal’ and ‘noise’ in our stimuli (vocalizations and ambient

environmental noises), the changes in modulation tuning that we

observe increase the information in the neural response. This

increase in information would not be evident in the results of Rees

and colleagues, because the modulation spectra of the ‘signal’ and

‘noise’ in their study are identical. The changes in modulation

tuning observed by Rees and colleagues as a result of an increase

in noise level cannot increase the information in the neural

response (because the signal to noise ratio is the same at all

modulation frequencies, there is no benefit in tuning in to any

Figure 5. Context-dependent changes in temporal processing are robust to changes in the overall intensity of the stimulus. a–c) The
RFs and MTFs for a typical cell estimated from responses to the V and VN stimuli at overall intensities of 25, 30, and 40 dB SPL above threshold. The
preferred frequency of the cell was 10.1 KHz. The error bars represent 95% confidence bounds. The RFs were normalized to have the same peak value
for plotting. Before computing the MTFs, RFs were normalized such that the variance of the result of the convolution of the RF with the vocalization
signal was one. d) The LF areas of the V and VN MTFs at a range of intensities for the cell whose RFs and MTFs are shown in a–c. The error bars
represent 95% confidence bounds. e) The percent change in LF area evoked by the addition of noise to the vocalization stimuli for a range of overall
stimulus intensities for a sample of 8 cells. The error bars represent one standard deviation of the distribution of percent changes in LF area across the
sample of cells.
doi:10.1371/journal.pone.0001655.g005
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particular frequencies). The fact that Rees and colleagues observe

changes in modulation tuning under stimulus conditions where the

changes have no clear functional benefit has a very interesting

implication, namely that the changes in modulation tuning are not

based on any real-time measure of signal to noise ratio at different

frequencies (in which case, Rees and colleagues would have

observed no changes), but rather that the system has evolved based

on the stereotypical properties of ‘signal’ and ‘noise’ in the natural

environment.

In addition to describing the functional benefit of the observed

phenomena within the context of natural stimuli, our results contain

several additional novel observations. First, we observe that context-

dependent changes in temporal processing are evident within

200 ms of a change in stimulus context (see Figure 4). This

extremely fast time course implies that system is well suited to deal

with rapid changes in stimulus context that may occur in the natural

environment. Second, we demonstrate that the context-dependent

changes in temporal processing are evident across a wide range of

overall stimulus intensities (see Figure 5), again suggesting that the

system is well suited to deal with simultaneous changes in stimulus

context and intensity that may occur under natural conditions.

A recent study reported similar changes in temporal processing

in the auditory system of awake songbirds in response to a change

in the statistics of the relevant stimulus itself [24]. The study by

Nagel and Doupe showed that a decrease in the overall intensity of

a stimulus restricted to the neuron’s preferred carrier frequency

range causes a change from bandpass to lowpass modulation

tuning, and we observed similar results in response to changes in

the overall intensity of our stimuli (see figure 5). Nagel and Doupe

observed changes in temporal processing within 100 ms of a

change in stimulus intensity and suggested that this fast time-

course reflects the presence of an adaptive nonlinearity. We

observed a similar time-course for the context-dependent changes

reported here (,200 ms, see figure 4), suggesting that a similar

mechanism may underlie both phenomena. However, while

adding noise to the vocalization stimulus increases its overall

intensity, the changes in temporal processing that we observe

(bandpass to lowpass) are actually in the opposite direction of those

expected for an increase in intensity (lowpass to bandpass). This

suggests that the changes we observe are due to stimulation at carrier

frequencies outside the neuron’s preferred range. Interestingly, the

context-dependent effects that we observe were relatively consistent

Figure 6. Actual and predicted responses of auditory neurons to naturalistic stimuli. a) A model of temporal processing in the auditory
pathway. The vocalization signal (with or without additive noise) is passed through either the V or VN RF, and the result is fed into an integrate and
fire mechanism to generate spikes. b) The temporal RFs estimated from responses to the V (black) and VN (red) stimuli for two cells with preferred
frequencies of 12.5 and 3 KHz, respectively. The RFs were normalized to have the same peak value for plotting. c,d) The actual and predicted
responses to repeated presentations of the V and VN stimuli for the two cells for which RFs are shown in b. The correlation coefficients between the
predicted and actual responses are shown. The correlation coefficients were calculated for responses to novel stimuli (those not used to fit the
model) for firing rate in 2 ms bins averaged over 100 repetitions.
doi:10.1371/journal.pone.0001655.g006
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across a range of overall stimulus intensities (see figure 5) suggesting

that adaptation to stimulus intensity and context may be functionally

independent, as was recently observed for adaptation to mean

luminance and contrast in the early visual pathway [22].

There have been a number of other studies of adaptive changes in

temporal processing in the early visual system that reveal

phenomena that are strikingly similar to those described above.

Studies in the retina and lateral geniculate nucleus have shown that a

decrease in the mean luminance or contrast of the visual stimulus

causes a change in the dynamics of the temporal RF, corresponding

to a change from bandpass to lowpass tuning for temporal frequency

[25–30]. The time-course of these changes is similar to that observed

for the corresponding changes in the auditory system, occurring

within 100 ms of a change in mean luminance or contrast [31] and

there is evidence that these changes may serve to maintain the flow of

visual information [32]. These similarities in adaptive temporal

processing across sensory modalities suggest that efficient coding may

be a general strategy employed by sensory systems.

Temporal processing and efficient coding
It is interesting to note that both the context-dependent changes

in temporal processing that we observed here and the adaptive

changes that have been observed in previous studies in response to

changes in the intensity of the relevant stimulus itself are predicted

by the efficient coding hypothesis [7]. Because the power spectra of

behaviorally relevant stimuli typically decrease with increasing

modulation (or temporal) frequency while the power spectra of

background noises are relatively flat (see figure 1 and Singh and

Theunissen [33]), the SNR of the combined behaviorally relevant

and background noise stimuli decreases with increasing temporal

frequency. The efficient coding hypothesis states that the optimal

strategy for temporal processing depends on the overall SNR of the

stimulus, with modulation tuning changing from bandpass to

lowpass as the overall SNR is decreased. When the overall SNR is

high, bandpass filtering can increase information through whitening

(decreasing the redundancy of correlated stimuli). When the overall

SNR is low, lowpass filtering can increase information through

smoothing (conserving signal power at low frequencies where the

SNR is high). Since both a decrease in overall intensity of the

stimulus and the addition of noise correspond to a decrease in the

overall SNR of the stimulus, the efficient coding hypothesis predicts

that both of these changes will evoke a transition from bandpass to

lowpass modulation tuning, in agreement with the experimental

results. Thus, intensity- and context-dependent changes in temporal

processing can be unified under the efficient coding hypothesis.

Possible mechanisms underlying changes in temporal
processing

Recent studies have revealed a number of the mechanisms that

underlie adaptive temporal processing in the early visual pathway

Figure 7. Context-dependent changes in temporal processing promote efficient coding. a) The power spectrum of the signal (thick lines)
and noise (thin lines) in the responses of the model with the V (black) and VN (red) RFs to the vocalization stimulus alone for a typical cell (the same
cell for which RFs and MTFs are shown in figures 3a and b). The gray band denotes the 20–120 Hz frequency range. The calculation of the signal and
noise components of the responses is described in the Materials and Methods. b) The mutual information rate between the stimulus and the
responses of the model with the V and VN RFs. The blue circle corresponds to the cell for which response spectra are shown in b. The crosses denote
the sample mean6one standard deviation. c) A histogram showing the percent changes between the information rates shown in b (change from the
responses of the VN model to the responses of the V model). d,e) Power spectra and information rates presented as in a and b for responses to the
vocalization stimulus with ambient noise. f) A histogram showing the percent changes between the information rates shown in e (change from the
responses of the V model to the responses of the VN model).
doi:10.1371/journal.pone.0001655.g007
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[34–36], but the mechanisms that underlie adaptive temporal

processing in the auditory system are not yet known. Our results

demonstrate that the addition of ambient noise to vocalization

stimuli causes a change in the dynamics of the temporal RF that

corresponds to a change from bandpass to lowpass tuning for

modulation frequency. Given the existing evidence that inhibition

shapes temporal processing in the auditory midbrain and

brainstem, it is likely that inhibition also modulates the context-

dependent changes that we observe here [37–39]. Indeed, a

previous study of the effects of inhibition on modulation tuning in

the chinchilla IC showed that blocking GABA A could cause a

change from bandpass to lowpass modulation tuning [40].

However, given the abundance of inhibitory connections in the

auditory periphery, we can only speculate as to whether the

changes in temporal processing that we observe reflect changes in

brainstem circuitry or are generated de novo in the IC. Further

study is necessary to determine the locus of context-dependent

changes in temporal processing in the auditory pathway and to

define the precise role of inhibition in this context.

Materials and Methods

Analysis of natural sounds
Animal vocalizations and bird songs from 30 different species

(for example: falcon, wren, chickadee, porcupine, lemur, mink)

were provided by the Library of Natural Sounds, Cornell Library

of Ornithology, Cornell University. Up to 3 seconds of sounds

from each species were concatenated to produce 80 seconds of

continuous sound. Human speech was taken from the IViE

Corpus, Department of Linguistics, University of Cambridge.

Read passages from several English speakers were concatenated to

produce 80 seconds of continuous sound. The animal vocaliza-

tions, bird songs, and speech were then concatenated to produce a

160 second ensemble of vocalizations. Ambient noise sounds were

taken from the Freesound Project, Universitat Pompeu Fabra.

Sounds from a variety of sources (rain, wind, waterfall, large

crowd, vacuum cleaner) were concatenated to produce a

160 second ensemble of ambient noises. Example sounds from

each ensemble are shown in Figure S1. The sampling rate for all

sounds was at least 44.1 KHz.

To analyze the statistics of the amplitude modulations (AMs) in

vocalization and ambient noise sound ensembles, all sounds were

converted to spectrograms with a carrier frequency resolution of

460 Hz and a temporal resolution of 1 ms. AMs were extracted

from each frequency band between 2.5 and 17.5 KHz (this range

included the preferred frequencies for .90% of the cells in this

study) for each sound and normalized to have a minimum value of

0 and a maximum value of 1. These normalized AMs were used to

compute amplitude distributions and power spectra as shown in

figures 1c and d. The amplitude distribution of AMs in

vocalizations was well described by an exponential distribution

with l= 0.015 (averaged across all carrier frequencies) and the

amplitude distribution of AMs in ambient noise was well described

by a Rayleigh distribution with b= 0.1 (averaged across all carrier

frequencies). The power spectra of the AMs were fit the function

1/f a in the 20–120 Hz frequency range, and the best fits were

achieved with a= 1.4 for vocalizations and 0.1 for ambient noise

(averaged across all carrier frequencies). These values for the

parameters of the amplitude distributions and power spectra of the

AMs were used to create the modulation signals for experimental

stimuli as described below. These results are qualitatively similar to

those of a previous study of the statistical properties of AMs in

different classes of natural sounds [41]. The quantitative

differences between our results and those of Singh and Theunissen

are likely due to the specifics of the sound ensembles used (for

example, Singh and Theunissen included both transient and

sustained environmental noises).

Creation of naturalistic stimuli
We used the amplitude distributions and power spectra of the

AMs in vocalizations and ambient noise described above to create

modulation signals for naturalistic stimuli. The processes for the

creation of the vocalization and ambient noise signals were slightly

different. First, to create the vocalization signal, Gaussian white

noise was filtered to have a power spectrum of 1/f a with a= 1.3 (a
was increased to the desired value of 1.4 by the logarithmic

operation described below). Next, the logarithm of the signal was

taken (after adding a constant value to the signal so that its

minimum value was 1) and the result was scaled such that its

distribution was exponential with l= 0.015. To create the ambient

noise signal, two Gaussian white noise signals were filtered to have

power spectra of 1/f a with a= 0.1. Next, each signal was squared,

and the square root of the sum of these squared signals was taken

and raised to the power of 0.1, such that the distribution of the

resulting signal was Rayleigh with b= 0.1. For the vocalization

stimulus (V), the vocalization signal was used to modulate a pure

tone carrier at a neuron’s preferred frequency (and also, for a

subset set of cells, a broadband pink noise carrier). For the

vocalization stimulus with ambient noise (VN), the vocalization

stimulus was combined with broadband Gaussian noise modulated

by the ambient noise signal. The SNR in the VN stimulus was

210 dB.

Physiological recordings
The surgical procedures used in this study have been described

in detail previously [42]. All experiments were approved according

to the German Tierschutzgesetz (AZ 211-2531-40/01+AZ 211-

2531-68/03). Briefly, adult Mongolian gerbils (Meriones ungui-

culatus) were anesthetized by an initial intraperitoneal injection

(0.5 ml/100 g body weight) of a physiological NaCl solution

containing ketamine (20%) and xylazine (2%). During surgery and

recordings, a dose of 0.03 ml of the same mixture was applied

subcutaneously every 20 min. A small metal rod was mounted on

the frontal part of the skull and used to secure the head of the

animal in a stereotactic device during recordings. The animal was

positioned in a sound-attenuated chamber and a craniotomy was

made over the inferior colliculus, 1.3–2.6 mm lateral from the

midline and 0.5–0.8 mm caudal from the bregma. The dura mater

overlying the cortex was removed, and glass electrodes filled with

1 M NaCl (5–15 MV) were advanced into the inferior colliculus

(2–4 mm below the surface).

Extracellular action potentials were recorded, filtered, and fed

into a computer via an A/D converter (RP2-1, TDT). Clear

isolation of action potentials from single-units was achieved by off-

line spike cluster analysis (Brainware, Jan Schnupp, TDT). Typical

recording periods lasted 10–14 h. After recordings, the animal was

killed without awakening by an injection of 0.1 ml of barbital. For

some animals, the last electrode position was marked by a

pressure-induced injection of Dextran and recording sites were

verified to be in the central nucleus of the inferior colliculus using

standard histological techniques [43].

Acoustic stimulation
Stimuli were generated at a 50 KHz sampling rate by TDT

System III (Tucker Davis Technologies). Digitally generated

stimuli were converted to analog signals (RP2-1, TDT), attenuated

(PA5, TDT) and delivered to electrostatic speakers (EC1, TDT)

coupled to tubes which were inserted in the ears. All stimuli were

presented monaurally to the ear contralateral to the recording site.
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When searching for cells, repeated presentations of a 200 ms

segment of broadband noise were presented. When a single-unit

was isolated, 200 ms pure tones of various intensities and

frequencies were presented to determine the preferred frequency

and threshold. Only those neurons with sustained responses to

the pure tone stimulus (those that responded on average with

more than one spike in the last 150 ms of a 200 ms pure tone at

the preferred frequency, 20 dB above threshold) were tested with

the V and VN stimuli described above (n = 78). For all neurons,

non-repeating 40 second segments (1–10 repetitions) of the V and

VN stimuli were presented and responses were used for

estimation of temporal RFs. Only those neurons whose firing

rate was strongly modulated by the V and VN stimuli were

included in the study (n = 63). Strong modulation was defined by

the peak of temporal RF being at least 10 times larger than the

noise level as determined by one standard deviation of the

temporal RF estimated from shuffled responses. The preferred

frequencies and thresholds for these neurons ranged from 2.5–

24 KHz and 25–65 dB SPL. For most neurons (n = 40), we also

recorded responses to repeated tone bursts at the preferred

frequency (25 dB above threshold) to characterize response type.

Of these neurons, 57% were choppers, 20% were onset-sustained,

15% were pausers, and 8% were sustained, according to the

criteria outline by Rees et al. (REES97). For a subset of neurons

(n = 23), responses to repeated presentations of short segments

(3 sec, 100 repetitions) of the V and VN stimuli were also

recorded and used for fitting and testing the model of auditory

temporal processing as described below. Each repetition of the

VN stimulus used the same vocalization signal and a different

noise signal. The distributions of response properties (best

frequency, threshold, mean firing rate, SNR) across this subset

of neurons were not significantly different from those across the

rest of the population (t-tests, p.0.1). The V stimulus was

presented with peak intensity between 45–85 dB SPL (the mean

intensity was approximately 25 dB lower) depending on the

threshold of the neuron. The additional noise in VN stimulus

with the SNR described above raised the peak intensity by 3 dB

SPL (and the mean intensity by 10 dB SPL).

Estimation of receptive fields and modulation tuning
functions

Temporal RFs were estimated via least-squares estimation. To

characterize temporal processing, the vocalization modulation

signal itself was used for RF estimation, rather than the full

spectrotemporal V or VN stimulus. The vocalization signal alone

was used for estimation of both V and VN RFs, as the resulting

estimates of the VN RF were less noisy than those estimated from

the combined vocalization and noise signals, with no observable

bias. We denote the (zero mean) modulation signal as s[n], where n

is the time sample. We denote the RF as g[m], representing a non-

parametric temporal RF with M lags. We assume a linear

relationship between stimulus and response such that the response

at time n is given by the convolution of the M preceding stimuli

with the RF. This convolution can be written as a matrix

multiplication: r[n] = sn g, where

sn~ s n{Mz1½ �,s n{Mz2½ �,:::s n½ �½ �

g~ g M½ �,g M{1½ �,:::g 1½ �½ �T

and T denotes matrix transpose. Similarly, the stimulus/response

relationship for a record of N time steps can be written as R = S g,

where

S~

s1

s2

..

.

sN

2
6666664

3
7777775

R~ r 1½ �,r 2½ �,:::r N½ �½ �T

As described by Theunissen and colleagues [44], the RF ĝ that

minimizes the mean squared error between the actual response R

and the estimated response R̂~S ĝ is given by:

ĝ~Cs
{1 S T R

where Cs is the autocorrelation matrix of the stimulus:

vs n½ � s n½ �w vs n½ � s n{1½ �w . . . vs n½ � s n{mz1½ �w
vs n½ � s n{1½ �w vs n½ � s n½ �w . . . vs n½ � s n{mz2½ �w

..

. ..
.

P
..
.

vs n½ � s n{mz1½ �w vs n½ � s n{mz2½ �w . . . vs n½ � s n½ �w

2
66664

3
77775

where ,.. denotes the average across all stimuli. In this case, the

least-squares estimate of the RF ĝ is equal to the so-called ’reverse-

correlation’ estimate of the RF, S T R, multiplied by the inverse of

the stimulus autocorrelation matrix Cs
21. The correlations in the

stimulus can bias the reverse-correlation estimate of the RF and

multiplication by Cs
21 corrects this bias. However, it should be

noted that the least-squares technique described here only corrects

for the bias introduced by the second-order statistics of the

stimulus. To ensure that the higher-order statistical properties of

the stimuli used in this study did not introduce an additional bias

into the RF estimate, we simulated responses to the V and VN

stimuli with a known RF (using the model described below). The

least-squares estimate of the RF from these simulated responses

was an unbiased version of the original RF, indicating that the

higher-order statistical properties of the stimuli did not bias the

estimate.

Because of the correlations in naturalistic stimuli, the singular

values of Cs can decrease rapidly (the condition number may be

high), and its inversion may be ill-conditioned. However, as we

have described previously [45,46], the above equation can be

solved recursively, starting with an initial value for Cs
21 and ĝ and

improving the estimates with each new stimulus/response

observation. At each time step, the RF estimate computed from

previous data ĝnjn{1 is used to generate a linear prediction of the

response of the neuron to the new stimulus (the subscript n|n21

denotes an estimate at time n given all data up to and including

time n21). This prediction is compared with the actual response

r[n] to yield the prediction error e n½ �~r n½ �{snĝnjn{1. The RF

estimate is updated by scaling the error by a gain factor related

to the stimulus autocorrelation matrix ĝnz1jn ~ĝnjn{1 zGn e n½ �.
The gain is computed at each time step as follows:

Gn~
Cs

{1
njn{1 sn

T

sn Cs
{1
njn{1

sn
T z1

where Cs
{1
nz1jn~Cs

{1
njn{1{Gn sn Cs

{1
njn{1

Data from all times within the stimulus/response record are

weighted equally in the estimation of ĝ.

Efficient Temporal Processing

PLoS ONE | www.plosone.org 11 February 2008 | Volume 3 | Issue 2 | e1655



The RF estimate ĝ can be further improved through

regularization [47]. To initialize the algorithm, the initial

conditions ĝ 0j{1~0 and Cs
{1

0j{1~d | I are used. The

regularization parameter d effectively reduces the condition

number of Cs by adding a constant to all of the elements along

the diagonal of Cs
21. However, this manipulation also introduces

a bias into the RF estimate, and the value of d must be chosen to

optimize the tradeoff between error avoided by decreasing the

condition number of Cs and error introduced by biasing the RF

estimate. For this study, we estimated RFs with a range of values

for d and chose the value (d= 0.001) which produced the RFs with

the most predictive power for the neurons for which RFs could be

cross-validated with responses to novel stimuli. For RF estimation,

spike times were binned to give an estimate of the firing rate in

1 ms bins. RFs were also estimated from shuffled responses, and

the standard deviation of these estimates were used to set

confidence bounds. Modulation tuning functions (MTFs) were

obtained by computing the power spectrum of the estimated

temporal RFs.

A model of temporal processing in the auditory pathway
To simulate responses to the V stimulus, the vocalization

modulation signal is passed through either the V or VN RF,

estimated as described above, and the output is used to drive and a

leaky, noisy integrate and fire (IF) spike generator. To simulate

responses to the VN stimulus, the vocalization and ambient noise

modulation signals were combined before passing through the RF.

This model is based on the one used by Escabi et al. [48] to predict

the responses of neurons in the cat IC to complex auditory stimuli.

The potential of the IF mechanism was governed by the

following differential equation:

dV tð Þ
dt

z
1

t
V tð Þ~ i tð Þzn tð Þ

C

where V(t) is the difference between the membrane potential and

its resting potential, i(t) is the output of the temporal RF, n(t) is

Gaussian white noise (representing the internal noise evident in

variable responses to identical stimuli), t is the membrane time

constant, and C is the membrane capacitance. Spikes are

generated in the model whenever the membrane potential exceeds

a specified threshold. After activation, a 2 ms refractory period

was imposed and the membrane was reset to its resting potential.

Because the temporal RFs include the effects of temporal

integration in the cell membrane, the output of the RF was

inverse filtered with the membrane impulse response of the cell,

h(t) = C21 e2t/t, before being fed into the IF mechanism. To

simplify the fitting of the model to experimental data, we fixed the

membrane time constant at 10 ms, and defined a dimensionless

‘normalized threshold’ that defined the spike threshold in terms of

the standard deviation of the intracellular potential (relative to the

resting potential). Thus, the response of the neuron was

independent of the scaling of the input and it was only necessary

to fit two parameters, the normalized threshold and the ratio of the

internal noise n(t) to the output of the RF i(t). These parameters

were fit by maximizing the correlation coefficient between the

simulated response of the model and the actual response of each

neuron (for firing rate in 2 ms bins), using temporal RFs that were

matched to the stimulus condition. For the sample of cells studied

here, the optimal values of threshold and SNR parameters ranged

from 0.6 to 1.8 and 26 to 10 dB.

The model was used to simulate the response of the system with

different temporal processing strategies using the V and VN RFs.

To isolate the effects of changes in temporal processing, the V and

VN RFs were normalized such that their outputs had the same

variance for a given stimulus condition, and the parameters of the

IF mechanism were matched to the stimulus condition, indepen-

dent of which RF was used.

Calculation of response power spectra, signal to noise
ratio, and mutual information

For a subset of cells, we recorded responses to short repeated

segments of the V and VN stimuli as described above. The SNRs

of these responses were calculated (for firing rate in 1 ms bins) as

described by Borst and Theunissen [49]. First, the signal spectrum

is obtained by computing the power spectrum of the response after

averaging across all trials. Next, to obtain the noise power, the

response from each trial is subtracted from the average response

and the power spectrum of this difference is computed. These

difference spectra are averaged over all trials to yield the overall

noise spectrum. Finally, the SNR is given by the ratio of the total

power of the signal and noise spectra.

The same procedure was used to calculate the signal and noise

spectra of simulated responses to 512 repeats of 30 second

segments of the V and VN stimuli. These simulated responses

were also used to calculate the mutual information between the

stimulus and response using the direct method [50]. Each spike

train was binned with dt = 1 ms resolution. The total entropy (SN
tot,

in bits/sec) of the probability distribution of possible N-bit words

(P(w)) was measured as:

SN
tot~{

1

N dt

X
w

P wð Þ log2 P wð Þ

The noise entropy (SN
noise, in bits/sec) of the conditional

probability distribution of possible N-bit words (P(w|t)) at a given

time in the experiment was measured as:

SN
noise~{

1

N dt

X
w

P wjtð Þ log2 P wjtð Þ

and averaged over all values of t. Total and noise entropies were

measured for N = [3,4,5,6] and extrapolated to N = ‘. The

difference between these extrapolated values S?
tot{S?

noise gives

the mutual information in the response. Calculations with different

stimulus lengths and numbers of repeats were used to verify the

stability of the information measures.

Supporting Information

Figure S1 Context-dependent changes in temporal processing

are robust to changes in the spectral properties of the carrier of the

vocalization stimulus. To test whether our observations of context-

dependent temporal processing were dependent on the spectral

properties of the carrier of the vocalization stimulus, we estimated

temporal RFs from responses to the V and VN stimuli with both a

pure tone and a pink noise carrier for the vocalization stimulus.

The power spectrum of the pink noise carrier was 1/f̂a with

a = 21 in the 2.5–24 KHz frequency range, and the total power of

the pure tone and pink noise carriers were equal. Results for a

typical cell are shown in panel a. For both the pure tone and pink

noise carriers, the addition of noise causes a clear change in

temporal processing. Panel b shows the average LF areas of the V

and VN MTFs with pure tone and pink noise carriers for a sample

of 9 cells (error bars represent one standard deviation). The LF

areas were typically larger for the pure tone carrier than for the
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pink noise carrier during both V and VN stimulation. While the

pure tone and pink noise stimuli had the same overall power, the

broadband nature of the pink noise carrier results in much of its

power being outside the range of frequencies to which an

individual neuron is responsive, while the power in the pure tone

carrier is always concentrated at the frequency to which the

neuron is most responsive. This difference in effective power may

be the reason the LF areas of the MTFs are larger for the pure

tone carrier than for the pink noise carrier, as the LF area of the

MTF is known to increase with increased stimulus power (see

figure 5 and Nagel and Doupe, Neuron, 2006). Nonetheless, across

the sample of cells, the addition of noise still results in a large

decrease (29%) in the LF area of the MTFs as shown in panel c,

indicating that the effects of ambient noise on temporal processing

are robust to changes in the spectral properties of the carrier of the

vocalization stimulus.

Found at: doi:10.1371/journal.pone.0001655.s001 (0.27 MB

DOC)
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