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SUMMARY

In this study, we characterize the adaptation of
neurons in the cat lateral geniculate nucleus to
changes in stimulus contrast and correlations.
By comparing responses to high- and low-
contrast natural scene movie and white noise
stimuli, we show that an increase in contrast
or correlations results in receptive fields with
faster temporal dynamics and stronger antago-
nistic surrounds, as well as decreases in gain
and selectivity. We also observe contrast- and
correlation-induced changes in the reliability
and sparseness of neural responses. We find
that reliability is determined primarily by pro-
cessing in the receptive field (the effective
contrast of the stimulus), while sparseness is
determined by the interactions between several
functional properties. These results reveal a
number of adaptive phenomena and suggest
that adaptation to stimulus contrast and corre-
lations may play an important role in visual
coding in a dynamic natural environment.

INTRODUCTION

One of the biggest challenges facing the early visual path-

way is the variability in the statistical properties of the nat-

ural environment. For example, the contrast in a particular

area within the visual field is constantly changing due to lo-

cal variations across the scene and global changes in

overall viewing conditions. Similarly, while the stereotypi-

cal spatial and temporal correlations evident in the power

spectra of natural visual scenes have been widely studied

(power decreases with increasing frequency as 1/fa, with

a typically between 1 and 3 [Field, 1987; Dong and Atick,

1995]), these correlations can vary dramatically depend-

ing on the specifics of the current environment. The

variability of the natural environment requires that the early

visual pathway employ an adaptive strategy, continuously

changing its response properties to match the statistical
properties of the current stimulus. Thus, in order to

understand the function of the early visual pathway under

natural viewing conditions, we must first understand its

adaptive mechanisms.

Adaptive mechanisms are prominent in the early visual

pathway. For example, a change in the contrast of the

stimulus can evoke changes in the temporal dynamics

and gain of neurons in the retina and thalamus (Shapley

and Victor, 1979; Smirnakis et al., 1997; Solomon et al.,

2004; Mante et al., 2005), and there is evidence that

such changes are necessary to maintain the flow of visual

information (Brenner et al., 2000; Fairhall et al., 2001). A

recent study reported that changes in dynamics can

also be evoked by specific stimulus patterns, indicating

that visual neurons can also adapt to correlations in

a manner that enhances sensitivity to novel stimuli

(Hosoya et al., 2005). While some adaptive changes in

the functional properties of the early visual pathway

have been widely studied, there are a number of contrast-

and correlation-induced effects that have not yet been

characterized.

In this study, we examine the effects of adaptation to

changes in stimulus contrast and correlations on the prop-

erties of neurons in the lateral geniculate nucleus (LGN) of

the thalamus. To characterize adaptation in a functional

context, we utilize the framework of a linear-nonlinear

(LN) model. The LN model maps stimulus to firing rate

through a cascade of a linear receptive field (RF) and a

rectifying static nonlinearity (NL) with a gain and offset.

While there are a number of similar models that provide

a suitable functional description of visual encoding, we

use this particular LN structure because its components

can be related to functional properties such as spatial

integration and temporal dynamics (RF) and selectivity

(offset) or to underlying physiological properties such as

conductance (gain) and baseline membrane potential

(offset) (Brown and Masland, 2001; Baccus and Meister,

2002; Manookin and Demb, 2006; Beaudoin et al., 2007).

Furthermore, this model has already been used success-

fully to characterize several of the functional and physio-

logical changes associated with adaptation in the early

visual pathway (Chander and Chichilnisky, 2001; Kim and

Rieke, 2001; Zaghloul et al., 2005).
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In this study, we fit LN models from responses to high-

and low-contrast natural scene movie and white noise

stimuli and characterize the contrast- and correlation-

induced changes in the spatiotemporal RFs and NLs. In

addition to confirming that several previously reported

adaptive phenomena are evident during natural stimula-

tion, our results reveal a number of phenomena including

contrast-induced changes in spatial integration and corre-

lation-induced changes in selectivity. Through further

analysis within the LN framework, we relate the functional

properties of LGN neurons to the reliability and sparse-

ness of their responses. The results suggest that it is not

the overall stimulus contrast that determines LGN re-

sponse properties but the ‘‘effective contrast’’ (the extent

to which a stimulus contains the features to which the RF

is sensitive). The results of this study provide a compre-

hensive characterization of adaptation in the early visual

pathway and suggest that this adaptation may serve to

maintain the reliability and sparseness of the neural code

under natural stimulus conditions.

RESULTS

The Functional Properties of LGN Neurons Adapt

to Changes in Stimulus Contrast and Correlations

We presented a series of complex visual stimuli to anes-

thetized cats while single-unit responses were recorded

in the LGN with a multielectrode array. Examples of the

stimuli, which included high-contrast (HC) and low-

contrast (LC) versions of natural scene movies (NS) and

spatiotemporal white noise (WN), along with the corre-

sponding responses of a typical neuron are shown in

Figure 1. Across the sample of 31 cells for which we re-

corded responses to all four stimuli, the mean firing rates

during HC stimulation (NS, 10.5 ± 4.8 Hz; WN, 8.2 ± 3.7

Hz) were significantly higher than those during LC stimula-

tion (NS, 6.5 ± 3.4 Hz; WN, 5.7 ± 3.1 Hz) for both NS and

WN (paired t tests, p < 0.001).

We designed the stimuli to allow a systematic study of

adaptation to changes in stimulus contrast and correla-

tions. To examine the effects of a change in stimulus con-

trast, we compared responses to the HC and LC versions

of each stimulus, as they were identical aside from the

difference in contrast. To examine the effects of a change

in stimulus correlations, we compared responses during

stimulation with low-contrast NS (strong spatiotemporal

correlations) and low-contrast WN (no spatiotemporal

correlations), as the mean firing rates for these stimuli

across the sample of 31 cells were not significantly differ-

ent (paired t tests, p > 0.2).

To characterize the effects of changes in stimulus con-

trast and correlations on the functional properties of LGN

neurons, we fit the components of an LN model from re-

sponses to each of the four stimuli. The LN model consists

of a linear spatiotemporal RF followed by a static NL, as

shown in Figure 2A. To estimate RFs, a least-squares

technique was used that accounted for the correlations

in the natural stimuli and prevented them from biasing
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the RF estimate (see Experimental Procedures). To esti-

mate NLs, the stimulus was convolved with the estimated

RF (after normalizing the RF to have unit variance), and the

resulting filtered stimulus was compared to the actual fir-

ing rate response. Across the sample of 26 cells for which

we recorded responses to repeated identical segments

of the HC and LC natural stimuli for crossvalidation, the

LN model provided accurate predictions of the LGN

Figure 1. LGN Responses to Natural Scene Movie and White

Noise Stimuli

(A) Typical frames of the high-contrast natural scene movie stimulus

and the responses of an ON-center X cell to repeated presentations

of a short stimulus segment. The region of the frame that was pre-

sented during the experiment is denoted by the white box (10� 3

10�). The spatial extent of the RF of the cell for which responses are

shown is denoted by the white circle.

(B–D) Typical frames and responses of the same cell for the low-

contrast natural scene movie stimulus and the high- and low-contrast

spatiotemporal white noise stimuli.
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Figure 2. LGN Cells Adapt to Changes in

Stimulus Contrast and Correlations

(A) A linear-nonlinear model of encoding in the

early visual pathway. The spatiotemporal vi-

sual stimulus (s) is passed through a linear filter

(g, the spatiotemporal RF) to produce the fil-

tered stimulus (y). The filtered stimulus is then

passed through a rectifying static nonlinearity

(f) to produce a nonnegative firing rate re-

sponse (r). The RF is normalized to have unit

variance.

(B) The spatiotemporal receptive fields for

a typical cell (ON-center X) during high- and

low-contrast natural scene movie and white

noise stimulation. The full spatiotemporal RF

was averaged radially to collapse space to

one dimension. Regions where an increase in

light intensity is excitatory are colored red,

and regions where an increase in light intensity

is inhibitory are colored blue. Center and sur-

round regions are separated by solid black

lines.

(C) The temporal profiles extracted from the

spatiotemporal RFs in (B), averaged over all

pixels in the center and surround. The error

bars indicate ± one standard deviation of

the RF estimates from nine separate stimulus

segments.

(D) The nonlinearities for the same cell during

high- and low-contrast natural scene movie

and white noise stimulation. The error bars in-

dicate ± one standard deviation of the NL esti-

mates from nine separate stimulus segments.
responses to novel natural stimuli, with correlation coeffi-

cients of 0.7 ± 0.07 for HC and 0.76 ± 0.07 for LC (for firing

rate in 8 ms bins).

The RFs and NLs of a typical cell as estimated from re-

sponses to the four stimuli are shown in Figures 2B–2D.

Figure 2B shows the spatiotemporal RFs (note that be-

cause the RFs are radially symmetric, space has been col-

lapsed to a single dimension for plotting). There are clear

differences evident in both the spatial and temporal prop-

erties of the RFs across stimuli. For example, a comparison

of the high-contrast natural scene RF (HC NS, top) with the

low-contrast white noise RF (LC WN, bottom) shows

a change in the relative strength of the surround, as well

as in the temporal dynamics. These changes are also evi-

dent in the temporal profiles of the RF center and surround,

as shown in Figure 2C. The temporal profile of the high-

contrast natural scene RF (red) shows the strongest sur-

round and fastest temporal dynamics, while the temporal

profile of the low-contrast white noise RF (gray) shows

the weakest surround and the slowest temporal dynamics.

The effects of changes in stimulus contrast and correla-

tions are also evident in the NLs of the cell, as shown in

Figure 2D. For all stimuli, the NLs resemble half-wave rec-

tifiers, producing zero output for negative inputs and pos-

itive output for positive inputs. However, there are also

clear differences in the gain (slope) of the NLs for large

positive inputs, as well is in the offset (the input required

to evoke a non-zero response). For example, the gain of
the low-contrast white noise NL (gray) is the largest, while

its offset is the smallest. Note that although the offset of

the NL can be viewed as a threshold, we refer to it as an

offset to avoid confusion with the physiological spike-

generation threshold.

To quantify the effects of changes in stimulus contrast

and correlations on the functional properties of LGN neu-

rons, we measured several properties of the RFs and NLs

and compared the results across different stimulus condi-

tions. To quantify changes in RFs, we measured the width

of the spatial RF center, the relative strength of the sur-

round, and the width of the temporal profile of the RF cen-

ter, as illustrated in Figure 3A. Across the sample of 68

cells for which we recorded responses to HC and LC nat-

ural stimuli, and the subset of 31 cells for which we also re-

corded responses to HC and LC white noise stimuli, de-

creases in contrast had no significant effect on the width

of the spatial RF, as shown in Figure 3B. However, across

the sample of 31 cells for which we recorded responses to

both NS and WN stimuli, a decrease in correlations

caused an average decrease of 20% in the width of the

spatial RF center.

Both the relative strength of the surround and the width

of the temporal profile of the RF center adapted to

changes in both contrast and correlations, as shown in

Figures 3C and 3D. The relative strength of the surround

was decreased by a decrease in contrast during both

NS (17%) and WN (18%) stimulation, as well as by
Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc. 481
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Figure 3. Adaptation of Receptive Fields to Changes in Stimulus Contrast and Correlations

(A) A schematic diagram defining the measured receptive field properties: RF center width is the width of the spatial RF center at half of its maximum

value (at the peak latency), surround/center ratio is the ratio of the peaks of the temporal profiles of the RF surround and center, temporal width is the

width of the primary phase of the temporal profile of the RF center at half of its maximum value. Further detail is given in the Experimental Procedures.

(B) The widths of the spatial RF center during high- and low-contrast natural scene movie and white noise stimulation for a sample of LGN cells. Bar

plots show the sample averages, and error bars represent one standard deviation. Significant differences (based on paired t tests) are marked by

asterisks (***p < 0.001).

(C and D) The surround/center ratios and temporal widths during high- and low-contrast natural scene movie and white noise stimulation for a sample

of LGN cells.
a decrease in correlations (34%), while the width of the

temporal profile of the RF center was increased by a de-

crease in contrast during both NS (16%) and WN (15%)

stimulation, as well as by a decrease in correlations

(15%). These contrast- and correlation-induced changes

in spatial and temporal RF properties were correlated.

For example, the correlation coefficient between the rela-

tive strength of the surround and the width of the temporal

profile of the RF center during HC and LC natural stimula-

tion was �0.5 (p < 0.001). The correlations between all

changes in RF and NL properties are shown in Figure S1

in the Supplemental Data available with this article online.

To quantify changes in NLs, we measured the gain (a)

and offset (q) as illustrated in Figure 4A. The gain adapted
482 Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc.
to changes in both contrast and correlations. The gain was

increased by a decrease in contrast during both NS (89%)

and WN (148%) stimulation, as well as by a decrease in

correlations (296%), as shown in Figure 4B. The offset

adapted to a change in contrast, but not to a change in

correlations. As shown in Figure 4C, the offset was de-

creased by a decrease in contrast during both NS (56%)

and WN (59%) stimulation, but a decrease in correlations

had no effect.

Since the stimuli have different contrasts and the RFs

are normalized to have unit variance, the sizes of the fil-

tered stimuli (the inputs to the NLs) will vary. Because of

these variations, the value of offset is only meaningful rel-

ative to the size of the corresponding filtered stimulus.
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Figure 4. Adaptation of Nonlinearities to Changes in Stimulus Contrast and Correlations

(A) A schematic diagram defining the measured nonlinearity properties: gain (a) is the slope of the nonlinearity for large inputs, offset (q) is the input

required to evoke a non-zero response. Further detail is given in the Experimental Procedures.

(B) The gains during high- and low-contrast natural scene movie and white noise stimulation for a sample of LGN cells. Bar plots show the sample

averages, and error bars represent one standard deviation. Significant differences (based on paired t tests) are marked by asterisks (***p < 0.001).

(C and D) The offsets and normalized offsets (selectivity) during high- and low-contrast natural scene movie and white noise stimulation for a sample of

LGN cells.
Thus, rather than specify the absolute value of the offset, it

is more informative to normalize it, giving a value for the

neuron’s selectivity relative to the standard deviation of

the filtered stimulus. Comparing the normalized offsets

across stimulus conditions reveals changes that are quite

different from those observed for the absolute offsets

shown in Figure 4C. As shown in Figure 4D, the normalized

offset was increased by a decrease in contrast during both

NS (14%) and WN (24%) stimulation, as well as by a de-

crease in correlations (90%).

The above results rely on steady-state responses to

stimuli with different contrasts and correlations. However,

under truly natural conditions, the statistics of the visual

stimulus can vary over time. To verify that the changes in

the functional properties of LGN neurons described above

are also observable under conditions where the stimulus
contrast changes dynamically, we investigated whether

similar changes in RFs and NLs were evident within a sin-

gle presentation of the high-contrast NS stimulus.

Figure 5A shows the contrast within the spatial RF of

a cell as it varies over time during a segment of the HC

movie, reaching values as high as 0.43 and as low as 0.27.

We estimated separate RFs and NLs for those periods

during which the contrast within the RF was within either

the top or bottom third of all values for this cell (denoted

by the gray bands). As shown in Figures 5B–5D, the

changes evident in the surround strength and temporal

dynamics of the RF and gain and offset of the NL are sim-

ilar to those described above. For a second cell with its RF

in a different location within the visual stimulus, the con-

trast is much higher and varies over a smaller range, as

shown in Figure 5E. As shown in Figures 5F–5H, the RFs
Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc. 483
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Figure 5. Contrast Adaptation during a Single Stimulus Trial

(A) The spatial receptive field and the temporal contrast averaged over the spatial RF for an OFF-center Y cell during a 150 s segment of the high-

contrast movie. The gray bars denote the top and bottom third of all contrast values during the entire movie.

(B) The spatiotemporal RFs during movie segments with contrast in the top (HC) and bottom (LC) third of all values for the cell shown in (A), displayed

as in Figure 2A.

(C) The temporal profiles of the RF center and surround extracted from the spatiotemporal RFs in (B).

(D) The static nonlinearities during movie segments with contrast in the top (HC) and bottom (LC) third of all values for the cell shown in (A).

(E–H) Results for an OFF-center X cell, displayed as in (A)–(D).
and NLs estimated from the highest and lowest contrast

periods of the stimulus for this cell are nearly identical.

These examples suggest that the characterization of the

effects of changes in stimulus contrast and correlations

on the functional properties of LGN neurons achieved

through our analysis of steady-state responses to HC

and LC natural and white noise stimuli may also be appli-

cable under more dynamic natural conditions.

Contrast- and Correlation-Induced Changes in the

Reliability and Sparseness of LGN Responses

The results described in the previous section provide

a characterization of the functional properties of LGN neu-

rons within the LN framework. Through further examina-

tion of these results, we can relate these functional prop-

erties to contrast- and correlation-induced changes in the

LGN responses. To quantify the effects of changes in

stimulus contrast and correlations on LGN responses,

we measured the reliability and sparseness of responses

to repeated identical stimuli and compared the results

across different stimulus conditions. We defined reliability

as the signal-to-noise ratio for firing rate responses in 8 ms

bins, and we measured sparseness on a scale from 0 to 1,

with 0 corresponding to a response that is the same during

every bin, and 1 corresponding to a response that is non-

zero only in a single bin (see Experimental Procedures).
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Across the sample of 31 cells from which we recorded

responses to all four stimuli, a decrease in contrast during

natural stimulation caused an average decrease of 54% in

reliability, as shown in Figure 6A. Similar decreases in re-

liability were caused by a decrease in contrast during

white noise stimulation (74%) and by a decrease in corre-

lations (68%). As shown in Figure 6B, a decrease in con-

trast during natural stimulation caused only a small de-

crease in sparseness (4%), but larger decreases in

sparseness were evident for a decrease in contrast during

white noise stimulation (16%) and for a decrease in corre-

lations (14%).

To relate the functional properties of LGN neurons to

these contrast- and correlation-induced changes in reli-

ability and sparseness, we created a generic LN model

for each of the four stimuli. The RFs for each model were

obtained by averaging the estimated RFs across the sam-

ple of cells (with a sign reversal for OFF-center cells). The

average RFs, shown in Figure 7A, display the same adap-

tive effects that were evident in the single-cell example

shown in Figure 2. NLs for each model were perfect half-

wave rectifiers (zero output for inputs that were less than

the offset; linear output for inputs that were greater than

the offset), with gains and offsets determined by the aver-

age values across the sample of cells (see below in

Figure 8A). Using the generic models, we can simulate

the firing rate response to each stimulus and relate the
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processing that takes place in the RFs and NLs to reliabil-

ity and sparseness.

We examined the effects of spatiotemporal integration

under each stimulus condition by comparing the contrast

of the stimulus before and after processing in the RF, as

illustrated in Figure 7B. Figure 7C shows the RMS contrast

(standard deviation) of the four stimuli along with the stan-

dard deviation of the corresponding filtered stimuli, which

we denote ‘‘effective contrast.’’ Because the RFs are nor-

malized to have unit variance, the difference between the

original and effective contrasts is a direct measure of the

extent to which a stimulus contains the features to which

the corresponding RF is sensitive. As is evident in

Figure 7C, spatiotemporal integration in the RF results in

an increase in the effective contrasts of the NS stimuli rel-

ative to those of the WN stimuli, indicating that the NS

stimuli contain more of the features to which the RF is sen-

sitive. As shown in Figure 7D, a comparison of the effec-

Figure 6. The Reliability and Sparseness of LGN Responses

to Natural Scene Movie and White Noise Stimuli

(A) Reliability of responses across a sample of LGN cells during high-

and low-contrast natural scene movie and white noise stimulation.

Error bars represent one standard deviation. Reliability was calculated

as signal-to-noise ratio for firing rate in 8 ms bins (see Experimental

Procedures). Significant differences (based on paired t tests) are

marked by asterisks (**p < 0.01, ***p < 0.001).

(B) Sparseness of LGN responses, displayed as in (A). Sparseness was

calculated as described in the Experimental Procedures.
tive contrasts of the four stimuli (line) with the experimen-

tally observed reliability in the LGN responses (circles)

reveals a strong correspondence (note that, because of

the difference in the units of reliability and effective con-

trast, both sets of values are normalized to their values

for high-contrast NS). This suggests that it is not the over-

all contrast of the stimulus but its effective contrast that

determines the reliability of LGN responses.

To understand the contrast- and correlation-induced

changes in the sparseness of LGN responses, we must

consider both the properties of the filtered stimulus as

well as the additional processing that takes place in the

NL. Figure 8A shows the probability distributions of the

stimuli after filtering in the generic RFs (thick lines), nor-

malized to have unit standard deviation and the same

peak value, along with the corresponding normalized off-

sets of the generic NLs (thin lines). The distributions of the

filtered NS stimuli (red and blue) have relatively heavy tails

(and, therefore, high sparseness), indicated by a high kur-

tosis (k = 4.06), while those of the filtered WN stimuli (black

and gray) are Gaussian (k = 3.01). The high kurtosis in the

distributions of the filtered NS stimuli disappears when the

frames of the stimuli are shuffled before spatiotemporal in-

tegration in the RF (green), indicating that the increased

kurtosis is due primarily to the temporal correlations in

the NS. The kurtosis of the filtered stimulus affects the

sparseness of the overall response, as the sparseness of

the response of the generic LN model (with high-contrast

natural scene RF and NL) to the original high-contrast NS

stimulus is 0.86, and shuffling the frames of the stimulus

decreases this value to 0.83.

Sparseness is also dependent on the offset of the NL, as

only those filtered stimuli that are greater than the offset

can evoke a response. Thus, one expects the sparseness

of the model responses to increase as the normalized off-

set is increased, with the lowest sparseness for high-con-

trast NS responses and the highest sparseness for low-

contrast WN responses. Indeed, as shown in Figure 8B,

the sparseness of the model responses (line) increases

as contrast and correlations are decreased. However,

this is the opposite of what is observed in the experimental

responses (circles), where decreases in contrast and cor-

relations evoke a decrease in sparseness. While the

sparseness of the model responses to high-contrast NS

stimuli matches that observed experimentally, the corre-

spondence between model and experiment for low-con-

trast WN is relatively weak.

The differences in the sparseness of the model and ex-

perimental responses shown in Figure 8B can be recon-

ciled by adding noise to the filtered stimulus in the LN

model, as illustrated in Figure 8C. This added noise in-

creases the variability of responses to identical stimuli

and, therefore, decreases the sparseness of the response.

Because the filtered stimuli have different effective con-

trasts, a fixed level of noise will have a different effect on

each stimulus, causing a relatively small decrease in the

sparseness of the high-contrast NS response and a rela-

tively large decrease in the sparseness of the low-contrast
Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc. 485
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Figure 7. Effective Contrast Determines

the Reliability of LGN Responses

(A) The spatiotemporal receptive fields for

high- and low-contrast natural scene movie

and white noise stimuli averaged across a sam-

ple of LGN cells. RFs for OFF-center cells were

sign-reversed before averaging. RFs are dis-

played as in Figure 2A.

(B) The linear part of the linear-nonlinear model

of encoding in the early visual pathway. The

spatiotemporal visual stimulus (s) is passed

through a linear filter (the spatiotemporal RF)

to produce the filtered stimulus (y). The RF is

normalized to have unit variance.

(C) The RMS contrast of the high- and low-con-

trast natural scene movie and white noise stim-

uli and the corresponding ‘‘effective contrast’’

of the filtered stimuli after processing in the

RFs shown in (A).

(D) The average reliability of experimental LGN

responses to high- and low-contrast natural

scene movie and white noise stimuli (circles,

error bars represent one standard deviation)

and the corresponding effective contrasts of

filtered high- and low-contrast natural scene

movie and white noise stimuli (line). Both sets

of values were normalized to their values dur-

ing high-contrast natural scene stimulation.
WN response. As shown in Figure 8D, as the noise level is

increased, the sparseness of the model responses is de-

creased, with the strongest decreases for the low-con-

trast WN responses. When there is no noise (Figure 8D,

yellow bar), the sparseness is highest for the low-contrast

WN response and lowest for the high-contrast NS re-

sponse, as was shown in Figure 8B (green line). As the

noise level is increased and the sparseness of the re-
486 Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc.
sponses decrease at different rates, there is a certain

noise level (Figure 8D, green bar) at which the sparseness

of the model and experimental responses are in close

agreement, as shown in Figure 8E. These results suggests

that the sparseness of LGN responses is determined by

a number of factors, including the sparseness and effec-

tive contrast of the filtered stimulus, noise, and the offset

of the NL.
Figure 8. Stimulus Sparseness, Effective

Contrast, Noise, and Offset Determine

the Sparseness of LGN Responses

(A) The probability distributions of filtered high-

and low-contrast natural scene movie and

white noise stimuli after processing in the RFs

shown in Figure 7A (thick lines) and the corre-

sponding normalized offsets (thin lines). The

result of shuffling the frames of the high-con-

trast NS stimulus before filtering is also shown.

Distributions were normalized to have unit

standard deviation and the same peak value.

(B) The average sparseness of experimental

LGN responses to high- and low-contrast

natural scene movie and white noise stimuli

(circles, error bars represent one standard

deviation) and corresponding sparseness of

LN model responses (line).

(C) The nonlinear part of the linear-nonlinear model of encoding in the early visual pathway with added noise. The filtered stimulus (y) is added to

Gaussian white noise (n) before passing through the static nonlinearity to produce the response (r).

(D) The sparseness of LN model responses to high- and low-contrast natural scene movie and white noise stimuli for different levels of noise. The

yellow bar indicates no noise, as shown in (B), and the green bar indicates the noise level where sparseness of the model responses matches

that observed experimentally, as shown in (E).

(E) The average sparseness of experimental LGN responses to high- and low-contrast natural scene movie and white noise stimuli (circles, error bars

represent one standard deviation) and corresponding sparseness of LN model responses (line) with the noise level marked by the green bar in (D).
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DISCUSSION

By comparing responses to high- and low-contrast natural

scene movie and white noise stimuli, we have shown that

the functional properties of LGN neurons adapt to

changes in stimulus contrast and correlations. In response

to a decrease in contrast, we observed changes in spatio-

temporal integration, evidenced by a decrease in the sur-

round strength and a slowing of the temporal dynamics of

the RF. A decrease in contrast also evoked increases in

gain (a given stimulus caused a larger response) and

selectivity (a larger stimulus was required to evoke a re-

sponse), evidenced by increases in the gain and normal-

ized offset of the NL. A decrease in correlations evoked

similar changes, as well as a decrease in the spatial extent

of the RF center. These results reveal a number of adap-

tive phenomena and provide a comprehensive character-

ization of the effects of changes in stimulus contrast and

correlations on LGN response properties.

Relation to Previous Studies of Contrast Adaptation

Our results regarding the effects of contrast adaptation on

temporal dynamics, gain, and offset are consistent with

those of previous studies in the early visual pathway.

The first studies of contrast adaptation in the retina re-

ported changes in gain and temporal dynamics similar to

those observed in our results (Shapley and Victor, 1978,

1981). As the contrast of a grating stimulus was increased,

the temporal frequency responses of retinal ganglion cells

showed a decrease in overall gain, a phase advance, and

a shift in tuning toward higher temporal frequencies (cor-

responding to the decrease in gain and transition to faster

dynamics in our results). These changes were well pre-

dicted by a model in which ganglion cell dynamics were

dependent on a measure of ‘‘neural contrast’’ similar to

the measure of effective contrast used here (Victor,

1987). More recent studies using white noise stimuli and

LN model-based analyses have reported similar changes

(Smirnakis et al., 1997; Chander and Chichilnisky, 2001;

Kim and Rieke, 2001; Brown and Masland, 2001). Studies

of contrast adaptation in the retina using intracellular re-

cordings have also reported changes in baseline mem-

brane potential (Baccus and Meister, 2002; Zaghloul

et al., 2005). Following an increase in the contrast of the

stimulus, the steady-state baseline membrane potential

of retinal ganglion cells decreased (corresponding to the

increase in normalized offset in our results). Recent stud-

ies in the LGN have used gratings of different contrasts to

demonstrate similar effects on gain and temporal dynam-

ics (Mante et al., 2005), as well as baseline membrane po-

tential (Solomon et al., 2004). Our results verify that these

changes in temporal dynamics, gain, and offset are also

evident under more natural stimulus conditions.

It is likely that the adaptive changes that we observe in

the LGN originate in the retina. Contrast-induced changes

in temporal dynamics, gain, and offset are already evident

in bipolar cells (Kim and Rieke, 2001; Rieke, 2001; Manoo-

kin and Demb, 2006; Beaudoin et al., 2007) and are en-
hanced during spike generation in ganglion cells (Kim

and Rieke, 2001; Zaghloul et al., 2005; Beaudoin et al.,

2007). The mechanisms that underlie these changes are

activity dependent (Rieke, 2001; Kim and Rieke, 2003;

Manookin and Demb, 2006; Beaudoin et al., 2007), sug-

gesting that the level of adaptation is determined by the ef-

fective contrast of stimulus (not the RMS contrast), which

is consistent with our results.

Our results also demonstrate that an increase in con-

trast during both natural and white noise stimulation

causes an increase in the strength of the RF surround

and has no effect on the size of the RF center. There

have been several studies of the effects of stimulus con-

trast on the spatial RFs of LGN neurons using disk and

grating stimuli, but explicit comparison of our results

with those of these studies is difficult. One study using

concentric disks to stimulate the center and surround

separately found that increasing the contrast of the sur-

round stimulus caused an increase in surround strength

(Kremers et al., 2004), which is consistent with our results.

Another study using disk stimuli reported a change in the

size of the RF center, but no change in the relative strength

of the classical RF surround (Nolt et al., 2004). However,

the stimuli used in this study were spatially uniform (only

the temporal contrast was changed), and it is possible

that the changes in surround strength that we observe

are due to changes in spatial contrast that were not pres-

ent in the disk stimulus. Finally, a recent study using grat-

ing stimuli reported that an increase in contrast caused an

increase in the strength of the ‘‘suppressive field’’ (Bonin

et al., 2005). Any differences between our results and

the results of these studies are likely due to the properties

of the stimuli used in each study, but further study is nec-

essary to fully clarify this issue.

Relation to Previous Studies of Adaptation

to Correlations

To our knowledge, there is only one other study in the early

visual pathway with which to compare our results on ad-

aptation to stimulus correlations. Hosoya and colleagues

(2005) showed that the RFs of retinal ganglion cells adapt

to predictable spatial and temporal patterns in a manner

that facilitates the detection of novel stimuli. These results

are consistent with our observations of the differences in

the RFs estimated from responses to natural and white

noise stimuli at the same contrast. For example, natural

stimuli contain strong spatial correlations, and the in-

creased strength of the RF surround during natural stimu-

lation decreases the sensitivity of the neuron to these

correlations while increasing its sensitivity to novel stimuli

such as edges. This interpretation is also consistent with

the results of a recent study in the visual cortex that dem-

onstrated that changes in spatial frequency tuning evoked

by changes in stimulus correlations increase the informa-

tion in the neural response (Sharpee et al., 2006). We also

observed differences in the gains and normalized offsets

of the NLs estimated from responses to NS and WN stimuli
Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc. 487
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at the same overall contrast, but as of yet there are no

comparable studies of these phenomena.

The Effects of Contrast and Correlations

on Reliability and Sparseness

Our results suggest that the reliability and sparseness of

LGN responses are determined not by the overall contrast

of the stimulus but by its effective contrast (the standard

deviation of the stimulus after filtering in the RF). Effective

contrast is a direct measure of the extent to which a stim-

ulus contains the features to which the RF is sensitive and

is similar to other measures of local contrast that have

been used previously (Victor, 1987; Tadmor and Tolhurst,

2000). Effective contrast can be viewed in the frequency

domain as the extent to which the frequency content of

the stimulus and the frequency tuning of the neuron over-

lap. From this perspective, it is apparent why the effective

contrast of NS stimuli is higher than that of WN stimuli with

a similar overall contrast (see Figure 7C), as the power in

NS stimuli is concentrated at low frequencies to which

the system is most sensitive, while power in WN stimuli

is spread evenly across all frequencies.

In examining the effects of stimulus correlations on LGN

responses, we chose to compare low-contrast NS and

WN responses because these stimuli had similar RMS

contrasts and evoked responses with similar mean firing

rates. However, because these stimuli also have different

effective contrasts, it is possible that the observed differ-

ences in the reliability and sparseness of low-contrast NS

and WN responses are not due to the change in correla-

tions per se but instead to the change in effective contrast

that results from the change in correlations. If this were

true, then the reliability and sparseness of responses to

low-contrast NS and high-contrast WN, which have differ-

ent correlations but similar effective contrasts, should

be similar. Indeed, when comparing responses to low-

contrast NS and high-contrast WN stimuli, the decreases

in reliability and sparseness corresponding to the de-

crease in correlations are no longer evident (see Figures

6A and 6B). In fact, the reliability and sparseness of the

high-contrast WN responses are slightly higher than those

of the low-contrast NS responses. This suggests that,

while stimulus correlations have an indirect effect on

reliability and sparseness, these response properties are

determined primarily by effective contrast.

Adaptation to Stimulus Correlations

Given that it is not correlations themselves but their impact

on the effective contrast of the stimulus that underlies the

differences in the reliability and sparseness of low-con-

trast NS and WN responses, one might also expect that

the adaptive changes evident in the comparison of the

low-contrast natural scene and white noise RFs and NLs

are also driven by the change in effective contrast, not

the change in correlations. If this were true, then these

changes, like those in reliability and sparseness, would

no longer be evident in a comparison between the RFs

and NLs for NS and WN stimuli with similar effective con-
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trasts. However, nearly all of the observed differences be-

tween low-contrast natural scene and white noise RFs and

NLs (spatial width, surround strength, gain, and normal-

ized offset) are still significant when RFs and NLs are com-

pared across low-contrast NS and high-contrast WN. This

suggests that these effects are indeed adaptations to

stimulus correlations, as they are evident when the natural

scene and white noise RFs and NLs are compared at sim-

ilar overall and effective contrasts. Thus, while reliability

and sparseness are similar for stimuli with different corre-

lations (and similar effective contrasts), the underlying

RFs and NLs are different, indicating that the observed

changes in RFs and NLs reflect adaptive mechanisms

designed to preserve reliability and sparseness.

The Functional Mechanisms Underlying Reliability

and Sparseness

Our results suggest that reliability is dependent primarily

on the effective contrast of the stimulus (see Figure 7),

while sparseness is determined by a number of factors

including the sparseness and effective contrast of the

filtered stimulus, noise, and the offset of the NL (see

Figure 8). Because filtered NS stimuli are more sparse

than filtered WN stimuli (as measured by kurtosis), re-

sponses to NS (with a fixed NL) will be more sparse than

responses to WN at the same effective contrast. Sparse-

ness is also influenced by the relative sizes of the stimu-

lus-dependent neural activity (effective contrast) and the

stimulus-independent neural activity (noise). For stimuli

with a high effective contrast, the neuron will respond re-

liably to the features of the stimulus to which it is sensitive,

with high sparseness (constrained by the sparseness of

the stimulus). For stimuli with a low effective contrast,

the response of the neuron will be a maintained discharge

driven primarily by noise, with equal probability of re-

sponse at all times and, thus, low sparseness. Our data

suggest that the offset of the NL adapts to changes in

stimulus sparseness (as determined by correlations) and

effective contrast to maintain the sparseness of the

response. For example, the offsets for low-contrast NS

and high-contrast WN (stimuli with different sparseness

and similar effective contrast) are dramatically different,

while the sparseness of LGN responses to these stimuli

are similar.

The Coding of Natural Stimuli in the LGN

Our results show that natural stimuli are coded with

greater reliability and sparseness than white noise stimuli

in the LGN and suggest that these differences are due to

differences in effective contrast. For stimuli with similar

overall contrasts, the reliability and sparseness of re-

sponses to natural stimuli were higher than those of re-

sponses to white noise (see Figures 6A and 6B). Further-

more, the sparseness of LGN responses was far more

robust to a change in contrast during natural stimulation

than during white noise stimulation. While a decrease in

contrast caused a small decrease in sparseness during

natural stimulation, the decrease was much larger during
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white noise stimulation. Thus, the mechanisms that pro-

duce a sparse response in the LGN may be effective

over the range of effective contrasts that are typical during

natural stimulation but are unable to maintain sparseness

at the very low effective contrast of the low-contrast WN

stimulus. This suggests that the adaptive changes that

we have characterized here may be optimized for the pro-

cessing of visual stimuli with statistical properties that are

typical of the natural environment.

EXPERIMENTAL PROCEDURES

Recordings from Cat LGN

The surgical and experimental preparations used for this study have

been described in detail previously (Weng et al., 2005). Briefly, cats

were initially anesthetized with ketamine (10 mg/kg, intramuscular)

followed by thiopental sodium (surgery: 20 mg/kg, intravenous;

recording: 1–2 mg/kg/hr, intravenous; supplemented as needed). A

craniotomy and duratomy were made to introduce recording elec-

trodes into LGN (anterior, 5.5; lateral, 10.5). Animals were paralyzed

with atracurium besylate (0.6–1 mg/kg/hr, intravenous) to minimize

eye movements and were artificially ventilated. All surgical and exper-

imental procedures were performed in accordance with United States

Department of Agriculture (USDA) guidelines and were approved by

the Institutional Animal Care and Use Committee (IACUC) at the State

University of New York, State College of Optometry. LGN responses

were recorded extracellularly within layer A. Recorded voltage signals

were conventionally amplified, filtered, and passed to a computer run-

ning the RASPUTIN software package (Plexon Inc., Dallas, TX). For

each cell, spike waveforms were identified initially during the experi-

ment and verified carefully offline by spike-sorting analysis. Cells

were classified as X or Y according to their responses to counter-

phased sine wave gratings (Hochstein and Shapley, 1976). All cells in-

cluded in this study were nonlagged cells.

Natural Scene Movie and White Noise Stimuli

Movie sequences were recorded by members of the laboratory of Peter

König (Institute of Neuroinformatics, ETH/UNI Zürich), using a remov-

able lightweight CCD camera mounted to the head of a freely roaming

cat in natural environments such as grassland and forest (Kayser et al.,

2003). It is important to note that while these movies provide an approx-

imation of the actual stimulus that the cat receives in the natural envi-

ronment, they do not capture the effects of saccades and fixational

eye movements, which can have significant effects on the statistics

of the visual input (Rucci and Casile, 2005). Movies were recorded

via a cable connected to the leash onto a standard VHS VCR (Pal) car-

ried by the human experimenter and digitized at a temporal resolution

of 25 Hz. Each frame of the movies consisted of 320 3 240 pixels and

16 bit color depth. For this study, the movies were converted to 8 bit

grayscale, and a 48 3 48 section of each frame was used. To improve

temporal resolution, movies were interpolated by a factor of 2 (to a sam-

pling rate of 50 Hz) using commercial software (MotionPerfect, Dynapel

Systems Inc.). Following interpolation, the intensities of each movie

frame were rescaled to have a mean value of 125 (possible values

were 0–255) for presentation. For all analyses in this study, the stimuli

were scaled to have zero mean and possible values between �106

and 106. To create high- and low-contrast versions of the movies,

each frame was rescaled to have an RMS contrast of 0.40 (high con-

trast) or 0.15 (low contrast). Aside from the difference in contrast, the

high- and low-contrast movie segments were identical, and the con-

trast transformations did not affect the mean intensity of the stimulus.

Thus, within the RF of any particular neuron, the mean intensity of the

high- and low-contrast movies was the same. During experimental pre-

sentation, movies were shown on a 20 inch monitor with a refresh rate

of 120 Hz, with pixel intensities updated every other refresh so that
playback approximated the intended temporal resolution of the inter-

polated movies. The spatial resolution of the stimulus was such that

each pixel was a square measuring 0.2� (RF center width, when mea-

sured as described below, was typically between 0.5� and 0.7�).

For all cells in this study, a single 15 min movie segment was shown

at high and low contrast for RF and NL estimation. For analysis of the

single 15 min movie segments, only those cells for which the peak of

the RF estimate was at least ten times larger than the noise (standard

deviation of RF estimated from shuffled responses) were included.

This sample included 68 cells: 44 cells that were ON-center (19 X cells,

19 Y cells, and 6 cells that were not classified because responses to

counterphased sine wave gratings were not recorded) and 24 cells

that were OFF-center (11 X cells, 8 Y cells, and 5 cells that were not

classified). For a subset of 26 cells, 24 repeated trials of a different

90 s movie segment were also shown at high and low contrast for

crossvalidation of the RFs and NLs. For a subset of 31 cells, a 6 min

segment of a spatiotemporal binary white noise stimulus was also

shown at high and low contrast, along with 120 repeated trials of differ-

ent 12 s segments of natural scene movie and white noise stimuli at

high and low contrast. For the white noise stimulus, each frame was

rescaled to have an RMS contrast of 0.55 (high contrast) or 0.20 (low

contrast). The spatial resolution and refresh rate of the white noise

stimulus were the same as those of the movies.

Measurement of Reliability and Sparseness

Reliability and sparseness were measured from responses to repeated

identical stimuli. Reliability was measured as the signal-to-noise ratio

(for firing rate in 8 ms bins) as described by Borst and Theunissen

(Borst and Theunissen, 1999). First, the signal spectrum is obtained

by computing the power spectrum of the response after averaging

across all trials. Next, to obtain the noise power, the response from

each trial is subtracted from the average response, and the power

spectrum of this difference is computed. These difference spectra

are averaged over all trials to yield the overall noise spectrum. Finally,

the signal-to-noise ratio is given by the ratio of the total power of the

signal and noise spectra.

Sparseness was measured as defined by Vinje and Gallant (Vinje

and Gallant, 2000):

1�
�

m2

m2 + s2

�
1�

�
1
n

�
where m is the mean firing rate, s is the standard deviation of the firing

rate, and n is the number of time bins. For a response that is the same

in every time bin (flat PSTH), the sparseness is zero. For a response

that is zero in all but one time bin, the sparseness is 1.

Estimation of Receptive Fields

In order to estimate receptive fields from responses to correlated

natural stimuli, an estimation procedure that accounts for the auto-

correlation structure of the stimulus must be employed. We have

previously developed a recursive least-squares (RLS) algorithm to

estimate RFs from responses to natural scene movies (Lesica and

Stanley, 2006). Importantly, through recursive computation, RLS

avoids the explicit inversion of the stimulus autocorrelation matrix,

resulting in a convergence rate that is independent of the eigenvalue

spread of the stimulus autocorrelation matrix (Haykin, 2002). This is

especially important when estimating RFs from a limited presenta-

tion of correlated stimuli.

We denote the visual input as the spatiotemporal signal s[p, n]. For

our computer-driven stimuli discretized in space-time, p represents

the grid index of a stimulus pixel on the screen, and n is the time sam-

ple. We denote the RF as g[p,m], representing P (total pixels in stimu-

lus) separate temporal RFs, each with M (length of temporal RF) lags.

To generate a linear prediction of the LGN response, the stimulus is

convolved with the RF: y[n] = sn 3 gn, If s and g are organized appro-

priately into the column vectors sn and gn, then this discrete time
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integration in space and convolution in time can be written as a vector

multiplication y[n] = sn
T gn, where sn and gn are the column vectors:

sn = ½s½P; n�M + 1�; s½P� 1; n�M + 1�; :::s½1; n�M + 1�;
s½P; n�M + 2�; :::s½1;n��T

gn = ½gn½P;M�;gn½P� 1;M�; :::gn½1;M�;gn½P;M� 1�; :::gn½1; 1��T

and T denotes matrix transpose. At each time step, the RF estimate

computed from previous data bgnjn�1 is used to generate a linear pre-

diction of the response of the neuron to the new stimulus (the subscript

njn� 1 denotes an estimate at time n given all data up to and including

time n � 1). This prediction is compared with the actual response r[n]

to yield the prediction error: e½n = r½n � sT
n
bgnjn�1

��
. The RF estimate is

updated by scaling the error by a gain factor related to the correlation

structure of the stimulus: bgn + 1jn = bgnjn�1 + Gne½n�. The gain is com-

puted each time step as follows:

Gn =
Knjn�1 sn

sT
n Knjn�1 sn + 1

where Kn + 1jn = Knjn�1 �GnsT
n Knjn�1

To initialize the algorithm, the initial conditions ĝ0j�1 = 0 and K0j�1 =

D 3 I are used. The regularization parameter D affects the convergence

properties and steady-state error of the RLS estimate. Estimating an

RF using a least-squares method requires the inversion of the stimulus

autocorrelation matrix (although in RLS, explicit inversion is avoided via

recursive solution). If the stimulus is correlated, the eigenvalue spread

of the autocorrelation matrix can become rather large, and the inver-

sion may be ill-conditioned. Regularization of this matrix can reduce

its condition number (ratio of largest to smallest eigenvalue) by adding

a constant to all of the elements along the diagonal (Haykin, 2002).

However, this manipulation of the diagonal elements of the stimulus

autocorrelation matrix also introduces a bias into the RF estimate.

Thus, regularization is a tradeoff between error avoided by decreasing

the condition number of the stimulus autocorrelation matrix and error

introduced by biasing the RF estimate. A set of rules for choosing

this value based on the signal-to-noise ratio in the system has been de-

veloped (Haykin, 2002). For this study, the value of D that produced the

RF estimates that provided the most accurate predictions of responses

to natural scene movies was used (D = 0.001).

In addition to having strong spatial and temporal correlations, nat-

ural stimuli are often also spherically asymmetric (Simoncelli et al.,

2003), and this asymmetry can bias RF estimates obtained using

least-squares techniques such as the one described above. To ex-

amine the effects of spherical asymmetry in our RF estimates, we

simulated LGN responses using the LN model with a known RF

and NL as described below. We estimated the RF from simulated

responses to both Gaussian white noise stimuli and the movie stim-

uli used in this study and found that the estimates were not signif-

icantly different, which suggests that the spherical asymmetry of the

movies used in this study did not cause a large bias in the experi-

mental RF estimates.

For RF estimation, spike times were binned at 128 Hz to give an es-

timate of the firing rate. Thus, each spatiotemporal RF estimate con-

sisted of 441 spatial points (21 3 21 grid) spaced at 0.2 cycles per de-

gree each with 24 temporal points spaced at 8 ms. RF estimates for

a given cell were estimated using the same number of spikes for

high- and low-contrast responses. Each response was broken into

nine segments, and RFs were calculated separately for each segment.

The mean of these nine RFs was used for measuring RF properties and

in the LN model to predict the response of the neuron to novel stimuli.

The error bars on the RF estimates represent ± one standard deviation

of the nine RF estimates.

Definition of Center and Surround

RFs were separated into center and surround components using the

following method (Lesica and Stanley, 2004). First, the point with the
490 Neuron 55, 479–491, August 2, 2007 ª2007 Elsevier Inc.
largest amplitude (maximal point) in the spatiotemporal RF was deter-

mined. Next, the center of the RF was defined as those spatial points at

the same latency as the maximal point that (1) formed a contiguous re-

gion with the maximal point and other center pixels and (2) had an am-

plitude with the same sign as the maximal point and a value that was

above the error level for that neuron. The error level for each neuron

was based on the RF estimate from randomly shuffled responses.

The standard deviation of this estimate (equal to zero in an ideal setting

with infinite data) provides a measure of the uncertainty in the actual RF

estimate. The surround was defined as a ring around the center region,

a maximum of four pixels wide.

Estimation of Static Nonlinearities

The static nonlinearities for each cell were calculated by convolving the

stimulus with the spatiotemporal RF to yield the filtered stimulus and

comparing it with the actual response of the neuron (firing rate in 8

ms bins). Before convolution, the mean of each stimulus was set to

zero, and each RF was normalized to have unit variance. The values

of the filtered stimulus were sorted into ascending order and separated

into groups of 250 values. For each group, the mean values of the fil-

tered stimulus and corresponding actual firing rates were used to de-

fine the static nonlinearity. As described above for the calculation of

RFs, each response was broken into nine segments, and NLs were cal-

culated separately for each segment. The mean of these nine NLs was

used for measuring NL properties and in the LN model to predict the

response of the neuron to novel stimuli. The error bars on the NL esti-

mates represent ± one standard deviation of the nine NL estimates.

Measurement of Receptive Field and Nonlinearity Properties

To quantify the effects of adaptation to changes in stimulus contrast

and correlations, we measured several properties of the estimated

RFs and NLs. To measure the width of the spatial RF, the spatial profile

of the RF (at the latency of the peak) was fit with a symmetric two-

dimensional difference of Gaussians function. The width of the spatial

RF was defined as the width of this function at half of its peak value. The

surround/center ratio and temporal width of the RF were measured

directly from the raw RF estimates. The surround/center ratio of the

RF was defined as the absolute value of the peak of the temporal profile

of the RF surround divided by the peak of the temporal profile of the RF

center. The width of the temporal RF was defined as the width of the

primary phase of the temporal profile of the RF center at half of its

peak value. Changes in contrast and correlations also had significant

effects on the latency (time to peak) of the temporal profile of the RF

center, but not on the biphasic ratio (the absolute value of the peak

of the primary phase of temporal profile of the RF center divided by

the peak of the secondary phase of temporal profile of the RF center).

To measure gain (a) and offset (q), the static nonlinearities were fit

with a half-wave rectifier:

fðxÞ=
�

aðx � qÞ; x R q

0; x < q

The only RF or NL parameter value that was significantly different

across animals for a given stimulus condition was q. This is likely due

to the different anesthesia requirements of each animal, as q is reflec-

tive of the baseline membrane potential (Baccus and Meister, 2002;

Zaghloul et al., 2005). To account for this difference, the values of q

for each stimulus condition were adjusted to have the same mean

value for each animal.

Across cell types (X/Y, ON/OFF), there were several significant dif-

ferences between RF and NL parameters. The width of the spatial

RF was significantly larger for Y cells than for X cells during both

high-contrast (X, 0.63 ± 0.16 deg.; Y, 0.75 ± 0.18 deg.) and low-con-

trast (X, 0.63 ± 0.14 deg.; Y: 0.73 ± 0.15 deg.) natural stimulation

(t tests, p < 0.01), the relative strength of the surround was significantly

larger for Y cells than for X cells during high-contrast natural stimula-

tion (X, 0.13 ± 0.04, Y, 0.16 ± 0.06; t test, p < 0.05), and the width of
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the temporal profile of the RF center was significantly larger for OFF

cells than for ON cells during low-contrast white noise stimulation

(ON, 25 ± 0.4 ms; OFF, 29 ± 0.4 ms; t test, p < 0.01). Also, the correla-

tion coefficients between LN model predictions and experimental re-

sponses to repeated identical segments of novel NS stimuli (for firing

rate in 8 ms bins) were higher for X cells than for Y cells at both HC

(X, 0.73; Y, 0.69) and LC (X, 0.78; Y, 0.75), but these differences

were not significant (t tests, p > 0.1).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/55/3/479/DC1/.
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