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Decoupling functional mechanisms of adaptive encoding
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Abstract
In a natural setting, adaptive mechanisms constantly modulate the encoding properties of sensory
neurons in response to changes in the external environment. Recent experiments have revealed that
adaptation affects both the spatiotemporal integration properties and baseline membrane potential of
sensory neurons. However, the precise functional role of adaptation remains an open question, due
in part to contradictory experimental results. Here, we develop a framework to characterize adaptive
encoding, including a cascade model with a time-varying receptive field (reflecting spatiotemporal
integration properties) and offset (reflecting baseline membrane potential), and a recursive technique
for tracking changes in the model parameters during a single stimulus/response trial. Simulated and
experimental responses from retinal neurons are used to track adaptive changes in receptive field
structure and offset during nonstationary stimulation. Due to the nonlinear nature of spiking neurons,
the parameters of the receptive field and offset must be estimated simultaneously, or changes in the
offset (or even in the statistical distribution of the stimulus) can mask, confound, or create the illusion
of adaptive changes in the receptive field. Our analysis suggests that these confounding effects may
be at the root of the inconsistency in the literature and shows that seemingly conflicting experimental
results can be reconciled within our framework.
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Introduction

Many sensory neurons adapt their response properties to changes in the visual environment.
In the early visual pathway, studies of adaptation have shown dramatic changes in encoding
properties in response to changes in the mean and contrast of the visual stimulus (Shapley &
Victor 1978; Movshon & Lennie 1979; Shapley & Enroth-Cugell 1984). Adaptive function is
particularly critical in a natural setting, where the statistical distribution of sensory stimuli is
constantly changing. For example, the mean or contrast of the stimulus within the receptive
field of a visual neuron can change drastically as a result of changes in illumination, object
and/or observer motion, or saccades across the visual scene. In the face of such changes,
it has been proposed that adaptive mechanisms enable sensory neurons to maximize their
differential sensitivity to the current stimulus (Shapley & Enroth-Cugell 1984) and optimize
the transmission of information to downstream neurons (Brenner et al. 2000; Fairhall et al.
2001). However, despite the ubiquitous nature of adaptation and the profound manner in
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which it affects the response properties of sensory neurons, its precise functional role remains
an open question.

In the early visual pathway, adaptation has been shown to occur on multiple time scales,
as encoding properties are adjusted in response to changes in the statistics of the stimulus
(Shapley & Victor 1978; Movshon & Lennie 1979; Shapley & Enroth-Cugell 1984; Smirnakis
et al. 1997). Adaptation has been shown to produce changes in both the spatiotemporal
integration properties and baseline membrane potential of a neuron (Carandini & Ferster
1997; Sanchez-Vives et al. 2000; Baccus & Meister 2002; Solomon et al. 2004) and a recent
study has shown that these changes are due to both synaptic and intrinsic mechanisms
(Zaghloul et al. 2005). The spatiotemporal integration properties of a neuron determine the
relationship between the visual stimulus and modulations in membrane potential, reflecting
the relative strength of synaptic inputs from upstream neurons. The baseline membrane
potential sets the operating point of the neuron with respect to its spike generation threshold
and determines the fraction of the modulations in membrane potential that are visible in
the firing rate response. For example, the same stimulus-driven modulations in membrane
potential can result in a high firing rate if the membrane is depolarized (and the potential
is already close the spike threshold), or no spikes at all if the membrane is hyperpolarized.
Thus, adaptive changes in the spatiotemporal integration properties and baseline membrane
potential act together to determine the response properties of the neuron.

Studies of the dynamics of adaptive encoding have produced conflicting results. For exam-
ple, studies of contrast adaptation in the rabbit retina are inconsistent in their descriptions
of the persistence of the decrease in gain that follows an increase in contrast. Some studies
suggest that following an increase in contrast, the gain will decrease rapidly (in less than one
second) and then remain constant while the contrast remains high (Baccus & Meister 2002),
while others suggest that the gain will decline slowly over a period of seconds (Smirnakis et al.
1997; Brown & Masland 2001). To investigate this inconsistency and provide an accurate
characterization of adaptive function, a framework must be developed in which each form
of adaptation can be uniquely characterized.

The functional role of adaptation is best investigated within the context of an encoding
model that captures the transformation from visual stimulus to neural firing activity. Here,
we develop a cascade model of visual encoding based on observations of adaptive function in
the visual pathway, with adaptive components reflecting spatiotemporal integration proper-
ties and baseline membrane potential. We also develop a recursive estimation approach that
allows each component of the cascade to be identified uniquely from extracellular observa-
tions of the neural response, and avoids the potentially confounding effects of the nonlinear
encoding properties of the neuron on the estimation of model parameters. Simulated and
experimental responses from neurons in the retina are used to demonstrate that the function
of simultaneously active mechanisms can be decoupled under adaptive conditions during a
single stimulus/response trial. Our analysis provides insight into how changes in spatiotem-
poral integration properties and baseline membrane potential interact to modulate encoding
properties during nonstationary stimulation, and also suggests a potential reconciliation of
the conflicting experimental results described above.

Adaptive encoding in the early visual pathway

A simple illustration of adaptive encoding can be observed during a contrast switching ex-
periment in the retina, in which the visual stimulus alternates between low and high contrast.
The mean firing rate of a retinal ganglion cell over 15 repeats of a contrast switching full-field
white-noise stimulus is shown in Figure 1.
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Figure 1. Adaptive encoding in the early visual pathway. The responses of a retinal ganglion cell to a spatially
uniform Gaussian white-noise stimulus were recorded extracellularly. Each 60 second trial contained 30 seconds of
stimulus at 35% contrast followed by 30 seconds of stimulus at 5% contrast, and a new realization of the white-noise
was generated for each trial. The mean firing rate of the neuron over 15 trials is shown in 3 second intervals (black,
error bars represent one standard deviation). The mean firing rate that would be expected for a non-adaptive system
(based on a linear increase from the mean firing rate before the switch from low to high contrast) is shown in gray.
The contrast of the stimulus is indicated below the horizontal axis.

These experiments were performed in the laboratory of Markus Meister at Harvard
University and details of the preparation are given in Baccus and Meister (2002). After
the switch from low to high contrast, the firing rate of the neuron increases rapidly, then
decreases gradually, until reaching steady state after approximately 10 seconds. Conversely,
after the switch from high to low contrast, the firing rate of the neuron rapidly decreases,
then gradually increases, finally reaching a new steady state. While the switch from low to
high contrast would result in an increase in firing rate in the absence of adaptation (as shown
in gray, based on a linear increase from the mean firing rate before the switch), the initial
sub-linear increase and the gradual decay in firing rate following the switch are a result of
the function of adaptive mechanisms and cannot be explained by a time-invariant model of
encoding.

A model of adaptive encoding

The response dynamics shown in Figure 1 are the result of the function of several adaptive
mechanisms that produce changes in gain, frequency tuning properties, and baseline mem-
brane potential on multiple time scales (Baccus & Meister 2002). In order to understand the
role of these adaptive changes in visual encoding, it is helpful to consider adaptive function
in the context of an encoding model. If the design of the model accurately reflects the nature
of the system under investigation, then changes in the parameters that describe the different
components of the model can be related to the function of underlying neural mechanisms.

The firing activity of many types of visual neurons can be characterized by a linear-
nonlinear (LN) cascade model consisting of a linear spatiotemporal receptive field (RF) and
a rectifying static nonlinearity (Hunter & Korenberg 1986; Reid et al. 1997; Chichilnisky
2001; Baccus & Meister 2002). Here, we develop a particular form of the LN cascade model,
shown in Figure 2, based on observations of adaptive function in the early visual pathway as
described above.

The encoding model developed here includes an adaptive RF (to capture changes in gain
and frequency tuning properties that are associated with the spatiotemporal integration prop-
erties of the neuron) and an adaptive offset (to reflect changes in baseline membrane po-
tential), along with a fixed static nonlinear rectification function. The parameters of the
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Figure 2. An LN cascade model of visual encoding. The spatiotemporal visual stimulus s is convolved with a time-
varying spatiotemporal RF g to yield the intermediate signal y. This signal is then combined with time-varying offset
θ to yield the generating function z. The generating function is passed through a static nonlinearity f to produce
the firing rate λ.

encoding model are intended to correspond to properties of the underlying neural system.
However, because the model is functional in nature and designed to characterize firing rate
responses to visual stimuli rather than modulations in membrane potential (and its parame-
ters are estimated from extracellular rather than intracellular observations of the response),
the correspondence between model parameters and intracellular quantities is indirect.

In the first stage of the LN cascade encoding model shown in Figure 2, the visual stimulus s
is passed through the time-varying linear spatiotemporal RF g to yield the filtered stimulus y,
which reflects the stimulus-driven modulations in the membrane potential of the neuron. The
offset θ is added to the filtered stimulus y before the static nonlinearity to shift the operating
point of the model with respect to the rectification threshold. It is important to note that the
offset captures only those changes in the membrane potential that are not accounted for by
the filtering of the visual stimulus in the RF. For example, although a decrease in the mean
of the stimulus could result in a direct decrease in the mean of the membrane potential,
this change would be reflected in the filtered stimulus y, not in the offset. However, if this
decrease in the mean of the stimulus also causes a change in the baseline membrane potential
via some indirect adaptive mechanism, that change would be reflected in the offset θ .

The filtered and offset stimulus z, known as the generating function, is passed through a
rectifying static nonlinearity f (·) to yield the non-negative firing rate λ. By fixing the static
nonlinearity, adaptive changes in the encoding model are forced into changes in the RF g or
offset θ . This avoids ambiguity, as, for instance, changes in gain could be mapped either to
the RF or to the slope of the static nonlinearity. The LN cascade encoding model is described
in more detail in the Appendix.

Estimation of model parameters

Because multiple adaptive mechanisms may be simultaneously active during visual encoding,
it is imperative that the approach employed for analysis is able to uniquely identify changes
in each component of the model. If the model structure underlying the parameter estimation
process is misspecified (for example, if standard reverse correlation is used and the static
nonlinearity and/or offset of the encoding model in Figure 2 are neglected), changes in the
baseline membrane potential, or even in the statistical properties of the stimulus can be
reflected as changes in spatiotemporal integration properties.

Consider the reduced encoding model defined by the mapping from the stimulus s to the
generating function z, shown in Figure 2, and assume that both the mean of the stimulus and
the offset θ are zero. Based on observations of s and z, the linear least-squares (or reverse-
correlation) RF estimate ĝ1 that minimizes the mean-squared error between the predicted
generating function ẑ and the actual generating function z is given by ĝ1 = �−1

s s φs z, where �s s
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is the Toeplitz matrix of the stimulus auto-covariance at different time delays, and φs z is the
cross-covariance between the stimulus and generating function (Marmarelis & Marmarelis
1978). In the absence of noise, the estimate ĝ1 will equal the actual RF g , and in the presence
of noise, ĝ1 will converge to g as more data are observed.

However, when the observed response is not the generating function z, but, for example,
the rectified firing rate λ, there is a mismatch between the model assumed in linear least-
squares estimation and the actual system. Consider the mapping from s to λ consisting
of the cascade of the linear RF g and the static nonlinearity f . Because the generating
function z undergoes additional processing in the static nonlinearity, the linear least-squares
RF estimate from observations of s and λ, which is ĝ2 = �−1

s s φsλ, does not necessarily equal
ĝ1, the RF estimate from observations of s and z. In fact, according to the result of a theorem
attributed to Bussgang (1952), ĝ2 is a scaled version of ĝ1. Bussgang’s theorem states that
the cross-covariance between the input to a static nonlinearity and the output of a static
nonlinearity, in this case φzλ, is proportional to the auto-covariance of the input to the static
nonlinearity, in this case φzz. Thus, the linear least-squares estimate of the mapping from z to
λ is a constant C = φzλ/φzz, and the best linear estimate of the two element cascade mapping
s to λ is ĝ2 = C�−1

s s φs z = Cĝ1 .
As described by Stanley (2002), the scaling constant C relating ĝ2 to ĝ1 is a function of the

fraction of the distribution of z that passes through the rectification. When the distribution
of z is symmetric, and the mean of the stimulus and offset are zero, then this fraction is
1/2. However, if the mean of the stimulus and/or offset are non-zero, then the fraction of the
generating function z that passes through the rectification is a function of the ratio of the mean
of z to its standard deviation. As the mean of z increases, the scaling constant C approaches
1 as more of the signal passes through the rectification, and as the mean of z decreases, the
scaling constant C approaches zero as less of the signal passes through rectification. Thus,
if linear least-squares is used to estimate the RF of a neuron from extracellular observations
of its response, changes in baseline membrane potential (which will affect the fraction of
stimulus-driven modulations in membrane potential that trigger spikes), will be mistaken for
changes in gain. Similarly, a change in the mean or contrast of the stimulus will also affect
the fraction of the stimulus-driven modulations in membrane potential that trigger spikes,
and can be reflected as changes in the gain of the estimated RF. This result has important
implications for the analysis of adaptive encoding, as the stimulus is nonstationary, and
changes in both the gain of the RF and the baseline membrane potential of the neuron have
been reported in experimental observations.

The confounding effects described above can be avoided by including both the offset and
the static nonlinearity in the estimation process. At a given time step n, if the stimulus and RF
parameters are organized appropriately, then the discrete time spatiotemporal summation
implemented by the first stage of the LN cascade model shown in Figure 2 can be written as a
dot product y[n] = s T

n gn. The generating function z[n] = s T
n gn+θ[n] can be written as the dot

product z[n] = s T
n gn = [sn1]T[gnθ[n]]. Because the parameter vector gn is a linear function of

the augmented stimulus vector sn, the RF and offset can be estimated simultaneously using
a variant of least-squares estimation.

To estimate the RF and offset parameters, we used an extended recursive least squares
(ERLS) approach, which is based on the Kalman filter approach to state estimation (Kalman
1960; Haykin 2002). The recursive nature of ERLS allows accurate tracking of changes in
the parameters of the encoding model during a single stimulus/response trial. As in any least-
squares approach, ERLS seeks the parameter estimate ĝ that minimize the mean squared
error (MSE) between the predicted response of the encoding model and the observed re-
sponse of the neuron at each time step. For the encoding model in Figure 2, this amounts to
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minimizing the square of e[n] �= λ[n]− f (s T
n ĝn|n−1), where the subscript n | n −1 denotes an

estimate at time n given the stimulus and response history up to and including time n − 1.
Because both the offset θ and static nonlinearity f (·) are included in the estimation process,
the confounding effects described above are avoided. For a full description of the ERLS
algorithm, see the Appendix.

It is important to note that the result of neglecting the offset and/or static nonlinearity
during the estimation process is not simply a displacement of equivalent function from one
component of the model to another, but a misrepresentation of the fundamental encoding
properties of the neuron. For example, while the scaled version of the RF that results from
estimating the RF from observations of the firing rate response without simultaneous esti-
mation of the offset does minimize the MSE between the actual response and the predicted
response for a model that does not contain an offset, the result is not functionally equiva-
lent to a model containing the actual RF and offset. This is explicitly demonstrated in the
Appendix, where the prediction error is shown to be significantly reduced for the full model.

Decoupling functional mechanisms of adaptive encoding

Simulated responses of retinal ganglion cells to stationary white-noise. As described above, the
interactions between a neuron’s spatiotemporal integration properties, baseline membrane
potential, and spike threshold can have significant effects on the characterization of its re-
sponse properties. To examine these effects, we used ERLS to estimate RF and offset pa-
rameters from the responses of a simulated retinal ganglion cell to white-noise stimuli under
steady-state conditions, with and without consideration of the offset and/or static nonlinear-
ity during the estimation process. Neglecting different components of the encoding model
during the parameter estimation process can provide some insight into the functional signif-
icance of the interactions described above. With ERLS, the offset is neglected by estimating
only the parameters of the RF (the augmented stimulus and parameter vectors sn and ĝ n are
reduced to sn and ĝ n) and the rectification is neglected by removing the static nonlinearity
from the predicted response of the neuron (in this case, it reduces to s T

n ĝn | n−1).
The response of a retinal ganglion cell to a single trial of spatially uniform, zero mean,

stationary white-noise was simulated using the cascade encoding model with a biphasic
temporal RF with an integration window of 300 ms. The simulated responses were used to
estimate the parameters of the RF, with and without simultaneous estimation of the offset
and/or consideration of the static nonlinearity. The simulations allow the direct observation
of the generating function (reflecting the neuron’s membrane potential), which is hidden
during extracellular experimental recordings.

During the estimation process, the distribution of the generating function z is inferred
based on observations of the firing rate response and the structure of the underlying encoding
model, and the gain of the RF estimate is based on the spread of this inferred distribution.
For a given stimulus, a narrow distribution of z corresponds to an RF with a small gain, while
a wide distribution of z corresponds to an RF with a large gain. Comparing the distributions
of the actual and predicted generating functions under various conditions can provide some
insight into the effects of the interactions between the various components of the encoding
model on the parameter estimation process.

The left plot in Figure 3A shows the distributions of the actual generating function z with
θ/σz = −0.5 (gray) and the predicted generating function ẑ (black) when both the offset and
the static nonlinearity are neglected during the estimation process.

The fraction of the actual generating function that is present in the observed spike response,
after offset and rectification, is shaded. Because the offset is neglected during the estimation
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Figure 3. The interactions between spatiotemporal integration properties, baseline membrane potential, and spike
threshold affect the estimation of encoding model parameters. The response of a retinal ganglion cell to spatially
uniform, zero mean, stationary white-noise was simulated and the responses were used to estimate the RF of the
simulated neuron, with and without the inclusion of the offset and the static nonlinearity in the estimation process.
(A) The left plot shows the probability distributions of the actual generating function z (gray) and the predicted
generating function ẑ (black) generated by the encoding model with the RF estimated without including the offset
or static nonlinearity in the estimation process. The fraction of the actual generating function that is present in the
observed firing rate response after offset and rectification is shaded. The mean of each distribution is indicated under
the horizontal axis, and the standard deviation of each distribution is shown in the inset. The middle plot shows the
RF estimates (black, thickness corresponds to offset value, see legend) when the offset and static nonlinearity are
neglected. The actual RF is also shown (gray). (B) The left plot shows the distributions of the actual and predicted
generating functions when the RF and offset are estimated simultaneously, but the static nonlinearity is neglected.
The middle plot shows the RF estimates under these conditions and the right plot shows the estimated vs. actual
offset for the range of offset values. The dashed black line denotes equality. (C) Actual and predicted generating
functions and RF estimates when the offset is neglected but the static nonlinearity is included in the estimation
process. (D) Actual and predicted generating functions, RF estimates, and actual vs. estimated offset values when
both the offset and the static nonlinearity are included in the estimation process.
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process, the mean of the predicted generating function µẑ is constrained to be zero (for a zero
mean stimulus). Thus, the distribution of ẑ is centered around zero, while the distribution
of z is centered around the negative offset. In addition, the standard deviation of ẑ is much
smaller than that of z (see inset). Because the static nonlinearity is also neglected during the
estimation process, the assumed encoding model that underlies the parameter estimation
process specifies that the observed firing rate response is actually the generating function
z. Accordingly, the RF estimate yields a predicted generating function ẑ with a standard
deviation that matches that of the observed firing rate response and underestimates the
spread of the actual generating function z.

The right plot in Figure 3A shows the RF estimates for a variety of actual offset values
typical of those observed under experimental conditions (ratio of offset to standard deviation
of generating function, θ/σz, between −0.5 and 0.5) when both the offset and static nonlin-
earity are neglected during the estimation process. The effects described above are visible
in the scaling of the RF estimates (black, thickness corresponds to offset value, see legend)
relative to the actual RF (gray). For zero actual offset, the gain of the RF estimate is half
of that of the actual RF. As the offset increases, and more of the generating function passes
through rectification, the gain of the RF estimate increases toward that of the actual RF,
while as the offset decreases, and less of the generating function passes through rectification,
the gain of the RF estimate decreases toward zero.

The effects of the interaction between the offset and the static nonlinearity on the estima-
tion of the RF and offset are apparent in Figures 3B and C. When the offset is estimated
simultaneously with the RF, but the static nonlinearity is neglected, as shown in Figure 3B,
the assumed model again specifies that the observed firing rate response is actually the gen-
erating function z, and thus the offset θ is estimated to be the mean of the observed response.
As a result, the RF estimate is again a scaled version of the actual RF and the offset estimate
is always greater than the actual offset (and approaches the correct value as the actual offset
increases and more of the generating function passes through rectification).

When the static nonlinearity is included in the estimation process, but the offset is ne-
glected, as shown in Figure 3C, the mean of the predicted generating function ẑ is again
constrained to be zero. Now the static nonlinearity is included in the assumed encoding
model and is reflected in the RF estimate. However, because the offset is neglected during
the estimation process and the distribution of ẑ is centered around zero, the RF estimate
is scaled as if exactly half of the actual generating function were rectified. When the actual
offset is less than zero, as in this example, this results in an RF estimate with a gain that is
smaller than that of the actual RF (as evidenced by the standard deviations of the actual and
predicted generating functions shown in the inset), while, when the actual offset is greater
than zero, this results in an RF estimate with a gain that is larger than that of the actual RF. In
fact, the gain of the RF estimated while including the static nonlinearity and neglecting the
offset during the estimation process (Figure 3C) is precisely twice that of the RF estimated
when the static nonlinearity is neglected (Figures 3A and B).

When the RF and/or offset parameters are estimated under the conditions described in
Figures 3A–C, the resulting model is a poor characterization of the stimulus/response trans-
formation. However, when both the offset and the static nonlinearity are included in the
estimation process, as shown in Figure 3D, the distributions of the predicted and actual gen-
erating function match, and the RF and offset estimates are accurate across the entire range
of offset values. Thus, the effects of the interaction between baseline membrane potential and
spike threshold on the estimation of spatiotemporal integration properties can be accounted
for if the RF and offset are estimated simultaneously and the static nonlinearity is included
in the estimation process. Furthermore, the inclusion of the offset dramatically improves the



Functional mechanisms of adaptive encoding 51

ability of the model to predict the neural response to novel stimuli, as demonstrated in the
Appendix.

Simulated responses of retinal ganglion cells to white-noise with varying contrast. The effects of the
interactions described above can have a significant impact on the characterization of adaptive
encoding during nonstationary stimulation, potentially masking, confounding, or creating
the illusion of adaptive function. In this simulation, the response of a retinal ganglion cell
(RGC) to spatially uniform white-noise was simulated as above. However, in this simulation,
the contrast of the stimulus was increased midway through the 60 second trial. Such changes
in stimulus contrast are followed by fast changes in gain and temporal dynamics in RGCs
(over the time course of approximately 100 ms), as well as changes in baseline membrane
potential with opposing fast and slow (over the time course of approximately 10 seconds)
dynamics (Baccus & Meister 2002). To model these changes, simulations were conducted in
which the RGC responded to the contrast switch with corresponding changes in gain (defined
as the peak amplitude of the RF) and/or offset, and ERLS was used to track the changes
during a single stimulus/response trial. In the following simulations and experimental studies,
the static nonlinearity is included in the estimation process, and the investigation will focus
on the effects of failing to simultaneously estimate both the RF and the offset. As described
above, if the RF and offset are not estimated simultaneously, then changes in the baseline
membrane potential or in the statistics of the stimulus can be reflected as changes in the gain
of the RF estimate.

In the first simulation, both gain and offset remained fixed while the stimulus was increased
from low to high contrast. The results of estimating the RF of the simulated neuron with
and without simultaneous estimation of the offset are shown in Figure 4A.

While the gain of the RF estimated with simultaneous estimation of the offset (solid black) is
similar to the actual gain (dashed black) and remains relatively constant throughout the trial,
the gain of the RF estimated without simultaneous estimation of the offset (gray) decreases
after the contrast switch. The increase in the standard deviation of the stimulus results in an
decrease in ratio θ/σz from 0.5 to 0.25, which changes the scaling of the RF estimate when
the offset is not estimated simultaneously. Although the encoding properties of the neuron
are completely stationary, the RF estimated without simultaneous estimation of the offset
appears to adapt due to the interaction between the offset and the static nonlinearity. Note
also the increased variability in the RF estimated without simultaneous estimation of the
offset.

In the second simulation, the gain remained fixed after the switch from low to high contrast,
while the offset θ was increased from 0 to 10 following the switch, causing the ratio θ/σz to
increase from 0 to 0.25. The results of estimating the RF of the simulated neuron with and
without the offset are shown in Figure 4B. While the gain of the RF estimated with the offset
(solid black) is relatively constant and similar to the actual gain (dashed black) throughout
the trial, the gain of the RF estimated without the offset (gray) increases after the contrast
switch. Because the response of the neuron has been rectified and the offset is neglected
during the estimation process, changes in the offset are mistaken for changes in gain. In fact,
in this case, this effect is mitigated somewhat by the effects of the change in the standard
deviation of the stimulus contrast described above.

In the third simulation, the fast increase in offset following the switch from low to high
contrast was accompanied by a fast decrease in gain, causing the ratio θ/σz to increase
from 0 to 0.5. The results of estimating the RF of the simulated neuron with and with-
out the offset are shown in Figure 4C. While the gain of the RF estimated with the off-
set (solid black) tracks the decrease in the actual gain (dashed black), the gain of the RF
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Figure 4. RF and offset estimates from simulated responses to contrast-switching white-noise. The response of a
retinal ganglion cell to spatially uniform, contrast switching white-noise was simulated and the responses were used
to estimate the RF and offset of the simulated neuron. The contrast switch in the stimulus was accompanied by
corresponding changes in the gain and offset of the simulated neuron. (A) RF and offset estimates for a simulated
neuron with gain and offset held fixed throughout the trial. The RF estimates with (black) and without (gray)
simultaneous estimation of the offset are shown in the top plot, along with the offset estimate in the bottom plot.
In both plots, the actual value of the quantity to be estimated is also shown (dashed black). The contrast of the
stimulus is indicated under the time axis of the top plot. Similar plots are shown for simulations in which the
simulated neuron responded to the contrast switch with (B) a fast change in offset, (C) fast changes in gain and
offset, and (D) a fast change in gain and fast and slow changes in offset.

estimated without the offset remains relatively constant following the contrast switch. In
this case, the actual decrease in gain is countered by the apparent increase in gain that
results from neglecting the offset during the estimation process. Thus, the interactions be-
tween the RF, offset, and static nonlinearity cause the adaptive changes to be completely
masked.
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Finally, in the fourth simulation, a slow decrease in offset is added to the fast changes in
gain and offset in the previous simulation. In this example, the offset decreases exponentially
toward its original value of zero in the 30 seconds following the change in contrast and
corresponding fast increases in gain and offset, reflecting the adaptive behavior observed
in actual retinal ganglion cells. The ratio θ/σz increases from 0 to 0.5 directly following
the increase in contrast, and gradually decays to zero. The results of estimating the RF of
the simulated neuron with and without the offset are shown in Figure 4D. While the gain
of the RF estimated with the offset (solid black) tracks the fast decrease in the actual gain
(dashed black), the gain of the RF estimated without the offset decreases slowly after the
contrast switch. In this case, the interactions between the RF, offset, and static nonlinearity
result in the fast adaptive changes being completely masked and the slow change in offset
being reflected as a slow change in gain.

Experimental responses of retinal ganglion cells to white-noise with varying contrast. Similar effects
of the interactions described above can be demonstrated under experimental conditions,
using the response of RGCs to a contrast switching stimulus. Spatially uniform Gaussian
white-noise was projected onto an isolated salamander retina and ganglion cell action po-
tentials were recorded extracellularly. These experiments were performed in the laboratory
of Markus Meister at Harvard University and details of the preparation are given in (Baccus
& Meister 2002). A new luminance value for the stimulus was chosen every 30 ms and the
contrast was switched from 5% to 35% every 30 seconds.

Figure 5A shows 3 minutes of the white-noise stimulus used in the experiment.
The estimates of gain and offset track the changes following stimulus transitions during a

single trial, as shown in Figures 5B and C. The average of these estimates over 24 repeats
of the same feature transitions are shown in Figure 5D and E (black). For comparison, the
gain of the RF estimated without simultaneous estimation of the offset is shown in gray. As
expected, the simultaneous estimates of RF and offset capture the fast changes in gain, as
well as opposing fast and slow changes in offset. Neglecting the offset during the estimation
process causes the fast changes in gain to be partially masked by the fast changes in offset (the
fast gain changes in the ‘RF Only’ estimate are smaller than those in the ‘RF & θ ’ estimate),
and the slow changes in offset to be reflected as slow changes in gain.

Discussion

The results presented above demonstrate the profound effects of the interactions between
spatiotemporal integration properties, baseline membrane potential and spike threshold on
the response properties of adaptive neurons. Using an encoding model with an adaptive
spatiotemporal RF and offset, we have demonstrated that the function of multiple adap-
tive mechanisms can be uniquely identified during a single trial of nonstationary stimu-
lus/response data. We have also shown that misspecification of the encoding model underlying
the parameter estimation process (estimating the RF without considering the offset and/or
static nonlinearity) can obscure adaptive function. Because of the rectification properties of
visual neurons, changes in baseline membrane potential and/or the statistics of the stimulus
can be reflected as changes in gain if the offset and static non-linearity are not included in
the estimation process. These results are consistent with those of other studies that have
investigated the effects of spiking dynamics on the characterization of linear response prop-
erties. For example, studies have shown that both refractoriness (Berry & Meister 1998) and
changes in membrane conductance (Pillow & Simoncelli 2003) can affect the estimation of
RFs.
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Figure 5. RF and offset estimates from experimental responses to contrast-switching white-noise. Experimentally
observed responses of a salamander retinal ganglion cell to a contrast switching stimulus were used for adaptive
estimation of encoding properties. (A) 3 minutes of the spatially uniform Gaussian white-noise stimulus. A new
luminance value for the stimulus was chosen every 30 ms and the contrast was switched between 5% and 35% every
30 seconds. (B) The gain of the RF estimate (with simultaneous estimation of offset) during the 3 minute interval.
(C) The offset estimate during the same 3 minute interval. (D) The average gain of the RF estimate over 24 repeats
of the same contrast transitions (12 minutes) with (black) and without (gray) simultaneous estimation of the offset.
(E) The average of the offset estimate over the same 12 minute interval.

These results have significant implications for the study of adaptive function. There are
a number of recent studies that have reported adaptive phenomena similar to those de-
scribed here (Carandini & Ferster 1997; Sanchez-Vives et al. 2000; Chander & Chichilnisky
2001; Kim & Rieke 2001; Zaghloul et al. 2005), and it appears that adaptation may be a
ubiquitous property of sensory encoding. We have distinguished between two types of adap-
tation (changes in spatiotemporal integration properties and changes in baseline membrane
potential) based on their functional properties. However, the origins of the two forms of
adaptation, the neural mechanisms that control them (local modulation of synaptic input
strength, large-scale changes in network properties, etc.), and their functional roles are still
the subject of controversy (Baccus & Meister 2004; Demb 2002). For example, studies of
contrast adaptation in the retina have produced conflicting results regarding the persistence
of the decrease in gain that follows an increase in contrast. While some studies suggest that,
if the contrast remains high, then the decrease in gain will persist (Victor 1987; Baccus &
Meister 2002), others suggest that the gain will continue to decline (Smirnakis et al.1997;
Brown & Masland 2001). As shown in a recent study by (Baccus & Meister 2002) using in-
tracellular recordings, the gain change that follows a contrast switch does indeed persist, and
is accompanied by corresponding fast and slow changes in baseline membrane potential. As
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our results have shown (see Figure 5), in estimating the RF from the experimental responses
of retinal ganglion cells to a change in stimulus contrast without simultaneous estimation of
the offset, slow adaptive changes in baseline membrane potential can appear as slow changes
in gain. Thus, the apparent continued decline in gain observed in the studies described above
may in fact have been a reflection of changes in baseline membrane potential, as the RFs in
those studies were estimated without simultaneous estimation of the offset.

The framework we have presented enables the analysis of adaptive function with encod-
ing models and parameter estimation approaches that are consistent with experimental ob-
servations. Using this framework, the function of multiple simultaneously active adaptive
mechanisms can be accurately characterized. With the addition of a single parameter to the
typical LN cascade model of visual encoding, the true dynamics of the RF can be decoupled
from changes in baseline membrane potential, and the confounding effects of adaptation be
avoided. There are indications that adaptive encoding is a fundamental principle of sensory
systems and the application of this framework at successive stages in the visual pathway, as
well as in other sensory systems, may provide insight into the neural mechanisms that underly
adaptive function.

Appendix

A1: A detailed description of the LN cascade encoding model

The firing activity of many types of sensory neurons can be characterized by a cascade of a
linear receptive field (RF) and a static nonlinearity (Hunter & Korenberg 1986; Reid et al.
1997; Chichilnisky 2001; Baccus & Meister 2002). Here, a particular form of the LN cascade
model, shown in Figure 2, is developed based on observations of adaptive function in the
early visual pathway (Shapley & Enroth-Cugell 1984; Shapley & Victor 1978; Movshon
& Lennie 1979; Carandini & Ferster 1997; Sceniak et al. 1999; Baccus & Meister 2002;
Solomon et al. 2004; Zaghloul et al. 2005). Each component of the LN cascade model is
described in detail below.

Linear spatiotemporal receptive field

In the first stage of the LN cascade encoding model shown in Figure 2, the visual stimulus
is passed through the linear spatiotemporal RF. The visual stimulus is described in terms of
the spatiotemporal light intensity, sampled at time interval �t and at a fixed spatial resolu-
tion. The spatiotemporal signal is denoted s [p, n], where p represents the grid index of a
pixel on the screen and n is the index of the time sample. Note that pixel refers not to the
atomic display units of the monitor, but, for instance, to uniform squares in a white-noise
checkerboard, subtending a fixed visual angle. No assumptions are made about the statistics
of the stimulus, as natural signals are often nonstationary and correlated over space and
time.

For many classes of neurons in the early visual pathway, visual inputs are summed linearly
across the extent of the receptive field in space and over the recent history of the stimulus in
time. The linear spatiotemporal receptive field (RF) represents this spatiotemporal summa-
tion, and is denoted in the model by the linear filter gn[p, m]. The filter represents P (total
pixels in stimulus) separate temporal filters each with M (length of temporal RF) lags. The
subscript n denotes the dependence on time, allowing for modulation of RF properties by
adaptation processes. If sn and gn are organized appropriately, then the discrete time spa-
tiotemporal summation can be written as a dot product y[n] = s T

n gn, where sn and gn are the



56 N. A. Lesica & G. B. Stanley

column vectors:

sn = [s [P, n − M+ 1], s [P − 1, n − M+ 1], . . . s [1, n − M+ 1], s [P, n − M+ 2], . . . s [1, n]]T

gn = [gn[P, M], gn[P − 1, M], . . . gn[1, M], gn[P, M − 1], . . . gn[1, 1]]T

where T denotes matrix transpose. The parameter values are unconstrained, so that adaptive
changes in gain and spatiotemporal tuning properties can be captured.

Offset

The output y[n] of the RF describes the projection of the spatiotemporal visual stimulus
onto the univariate process that gives rise to the neuronal activity. Because of the rectification
properties of neurons, the stimulus-driven modulations that are captured by y[n] can result
in different responses depending on the baseline membrane potential. In the encoding model
shown in Figure 2, variations in baseline membrane potential are reflected in the time-varying
offset θ[n].

Static nonlinearity

The filtered and offset stimulus z[n], known as the generating function, is projected onto a
non-negative firing rate λ[n] through a rectifying static nonlinearity f (·). The model used
here (variable offset, fixed rectification threshold) is functionally equivalent to a rectifier with
a variable threshold. However, the former more accurately reflects the underlying physiology
(adaptive changes have been observed in baseline membrane potential, but not in the thresh-
old for spike generation (Carandini & Ferster 1997; Carandini & Ferster 2000)). For many
visual neurons (including those analyzed in this study), the static nonlinearity (as estimated
from responses to stationary white-noise using reverse correlation and a graphical fitting
method (Chichilnisky 2001)) closely matches linear, half-wave rectification. Thus, here the
static nonlinearity f (·) is assumed to be a linear half-wave rectifier, where

f (z) =
{

z, z ≥ 0
0, z < 0

It should be noted that, although a linear half-wave rectifier is imposed here, the ERLS
approach for estimating the parameters of the encoding model is developed for a general
static nonlinearity f (·), the specific form of which should be chosen based the properties
of the system under investigation. Model parameters were estimated using simulated visual
neurons in which the static nonlinearity had a different shape, such as a hyperbolic tangent
rectifier or a sigmoid, and the results were similar to those obtained with linear rectification.

It should also be noted that the LN cascade model described here only provides accurate
description of firing rate on timescales that are larger than that of the neuron’s relative
refractory period. On a finer timescale, changes in the statistics of the stimulus can alter the
trial to trial variability of the neural response (Reich et al. 2001). However, the description
of such phenomena is beyond the scope of this paper.

A2: A detailed description of extended recursive least-squares

From the LN cascade model in Figure 2, the generating function (without noise) z[n] =
s T
n gn + θ[n] can be written as the dot product z[n] = sT

n gn = [sn 1]T[gn θ[n]]. The variable
components of the cascade encoding model described by the M × P + 1 parameters of gn
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can be adaptively estimated from stimulus/response data using an extended version of the
recursive least-squares approach (ERLS). The ERLS algorithm for estimating the parameters
of the model in Figure 2 is given by:

e[n] = λ[n] − f
(
s T
n ĝn | n−1

)
Prediction Error

Gn = Kn | n−1sn

s T
n Kn | n−1sn + 1

Update Gain

ĝn+1 | n = ĝn | n−1 + Gne[n] Update Parameter Estimates

Kn+1 | n = Kn | n−1 − Gns T
n Kn | n−1 + σ 2

q [N]I Update Inverse of Stimulus

Autocovariance

At each time step, the gain G is calculated based on the estimate of the inverse of the
stimulus autocovariance matrix K (permitting the use of correlated stimuli) and combined
with the prediction error e to update the parameter estimate ĝ . To initialize the algorithm, the
initial conditions ĝ0|−1 = 0 and K0|−1 = δ × I are used, where I is the appropriately dimen-
sioned identity matrix. The regularization parameter δ affects the convergence properties and
steady-state error of the ERLS estimate. By placing a lower bound on the condition number
of the stimulus autocovariance matrix, the regularization parameter δ places a smoothness
constraint on the parameter estimate, removing some of the error introduced by highly corre-
lated natural stimuli. For parameter estimates computed here, δ was set to 10−4. A discussion
of choosing the value of δ based on the signal-to-noise ratio of the system under investigation
is given in (Haykin 2002).

The prediction error e is the difference between the observed and predicted firing rates.
Given the stimulus and the current estimate of the RF, the expected firing rate is:

E{λ[n]|sn, ĝ n | n−1} =
∫

λ

λ[n]p(λ[n])|sn, ĝ n | n−1)dλ[n]

=
∫

v

f (s T
n ĝn | n−1 + v[n])p(v[n])dv[n]

where p(λ[n]|sn, ĝ n | n−1) is the probability density function of the predicted response condi-
tioned on the current stimulus and estimated model parameters. Through a series expansion
about s T

n ĝn | n−1, the expectation can approximated as E{λ[n]|sn, ĝ n | n−1} ≈ f (s T
n ĝn | n−1). This

approximation is valid when the signal to noise ratio in the system is large (the stimulus-driven
modulations in membrane potential are much larger than the intrinsic noise), as is typically
the case in visual neurons under dynamic stimulation. In the event that this approximation
is not valid, the integral expression for the expected firing rate can be evaluated at each time
step.

The learning rate σ 2
q [n] should reflect the expected change in the parameter values over a

given interval. For all parameter estimates computed here, it was assumed that the parameters
change independently of one another and at equal rates. For parameter estimation under
steady-state condition, σ 2

q [n] was set to the constant value 0.001. For parameter estimation
under adaptive condition, σ 2

q [n] was increased to a value of 0.01 for the 300 ms following
a contrast switch, to capture fast adaptive changes. For range of RFs shown here, these
values for σ 2

q [n] correspond to between 0.002% and 1% of the gain (peak amplitude). For
further discussion of the effects of the choice of the adaptive learning rate σ 2

q [n] on adaptive
parameter estimation, see (Lesica & Stanley 2005).
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A3: Encoding models estimated with and without offset are not
functionally equivalent

The results presented here have demonstrated that, when the underlying system has a non-
zero offset and rectifying static nonlinearity, estimating the RF without simultaneous esti-
mation of the offset produces a scaled version of the actual RF. The purpose of this section
is to demonstrate that, although the scaled version of the RF minimizes the MSE between
the predicted and actual responses for an assumed model structure with no offset, an en-
coding model containing the scaled RF and no offset is not functionally equivalent to one
containg the actual RF and offset. This is illustrated by the results of the simulations shown
in Figure 6.

The response of a retinal ganglion cell to a 60 second segment of spatially uniform, station-
ary white-noise was simulated with offset values of −10 Hz and 10 Hz. The responses were
used for RF estimation with ERLS, with and without simultaneous estimation of the offset.
The RFs estimated without simultaneous estimation of the offset were used in the encoding

Figure 6. Encoding models including RFs estimated with and without simultaneous estimation of the offset are
not functionally equivalent. The response of a retinal ganglion cell to spatially uniform, stationary white-noise was
simulated with offset values of −10 Hz and 10 Hz. The responses were used to estimate the RF of the simulated
neuron with and without simultaneous estimation of the offset, and the results were used in the cascade encoding
model to predict the response of the neuron. (A) The RF estimates with (solid black) and without (gray) simultaneous
estimation of the offset are shown, along with the actual RF (dashed black), for the simulation with an offset value
of 10 Hz. (B) Actual and predicted responses of the simulated neuron over a 1.5 second interval. The response
from the encoding model with the accurate RF and offset is shown in solid black. The response from the model
with the scaled RF and no offset is shown in gray. The actual response is shown in dashed black. The MSE between
the predicted and actual responses over the entire 60 second trial are also shown. Similar results for a simulated
neuron with an offset value of −10 Hz are shown in (C) and (D).
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model with an offset of zero, and the RFs estimated with simultaneous estimation of the
offset were used in the encoding model with the corresponding estimated offset value. For
all estimates in this example, the static nonlinearity was included in the estimation process.

Figure 6A shows the RF estimates for the simulation with an offset of 10 Hz. As expected,
the RF estimated with simultaneous estimation of the offset (solid black) matches the actual
RF (dashed black), while the RF estimated without simultaneous estimation of the offset
(gray) is a scaled version of the actual RF. As illustrated in Figure 3, estimating the RF
without simultaneous estimation of the offset when the static nonlinearity is included in
the estimation process and the actual offset is positive results in an RF estimate with a
larger gain than the actual RF. The results of using the two RF estimates in the cascade
encoding model to predict the response of the neuron are shown in Figure 6B. The figure
shows the actual firing rate of the neuron λ (dashed black) and the predicted firing rate
λ̂ generated by the models containing the RFs estimated with (solid black) and without
(gray) simultaneous estimation of the offset. While the prediction from the encoding model
with the RF estimated with simultaneous estimation of the offset closely matches the actual
response (MSE = 0.5% of response variance), the prediction from the model with the RF
estimated without simultaneous estimation of the offset contains substantial error (MSE =
20.4%). Similar results are shown for the simulated neuron with an offset value of −10 Hz
in Figures 6C and D. In this case, the RF estimated without simultaneous estimation of
the offset has a smaller gain than the actual RF, as the actual offset is negative. Again, the
prediction from the encoding model with the RF estimated with simultaneous estimation of
the offset closely matches the actual response (MSE = 0.4% of response variance), while the
prediction from the model with the RF estimated without simultaneous estimation of the
offset contains substantial error (MSE = 18.2%). Thus, although the scaled RF estimated
without simultaneous estimation of the offset does minimize the prediction error for the
encoding model with zero offset, the result is not an accurate description of the underlying
system.
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