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Abstract—Traditional approaches to characterizing the transfor-
mation from stimulus to response in sensory systems assume both
stationarity of the stimulus and time-invariance of the stimulus/
response mapping. However, recent studies of sensory function
under natural stimulus conditions have demonstrated important
features of neural encoding that are in violation of these assump-
tions. Many sensory neurons respond to changes in the statistical
distribution of the stimulus that are characteristic of the natural
environment with corresponding changes in their encoding prop-
erties. In this paper, an extended recursive least-squares (ERLS)
approach to adaptive estimation from stimulus/response observa-
tions is detailed. The ERLS approach improves the tracking ability
of standard RLS approaches to adaptive estimation by removing
a number of assumptions about the underlying system and the
stimulus environment. The ERLS framework also incorporates an
adaptive learning rate, so that prior knowledge of the relationship
between the stimulus and the adaptive nature of the system under
investigation can be used to improve tracking performance. Simu-
lated and experimental neural responses are used to demonstrate
the ability of the ERLS approach to track adaptation of encoding
properties during a single stimulus/response trial. The ERLS
framework lends tremendous flexibility to experimental design,
facilitating the investigation of sensory function under naturalistic
stimulus conditions.

Index Terms—Adaptive estimation, least-squares, receptive
field, recursive.

I. INTRODUCTION

NE MAIJOR goal of sensory neurophysiology is to under-

stand how information about the outside world is encoded
in the electrical activity of neurons within various pathways
of the brain. This is a system identification problem: encoding
mechanisms (system) are characterized by observing neural re-
sponses (output) to sensory stimuli (input). The traditional ap-
proach to this problem is to record the firing rate modulations
of neurons in response to simple stimuli, such as white-noise,
and estimate a linear filter, or receptive field (RF), using least-
squares estimation [1]. This approach has been successful in
characterizing the basic function of many sensory areas. RFs
have been used in functional models of the visual, auditory, and
somatosensory pathways [2]-[4]. However, several assumptions
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are generally involved in the traditional approach, namely that
the stimulus is stationary (drawn from a fixed statistical distribu-
tion), and that the encoding properties of the neuron are time-in-
variant, both of which are only valid under the most artificial of
experimental conditions.

In a natural setting, the statistical distribution of the stimulus
is constantly changing. For example, the mean and contrast
of the intensity of light incident upon the retina can vary over
many orders of magnitude throughout the day due to changes
in illumination and the constant motion of objects within the
visual field. It is also known that sensory neurons adapt their
encoding properties (gain, spatial, and temporal tuning, etc.) in
response to such changes (for reviews, see [5] and [6]). These
adaptive mechanisms are thought to serve important functional
roles, such as maintaining contrast sensitivity over a wide range
of mean values [5] and maximizing the flow of information to
downstream neurons [7], [8]. Encoding models based on RF’s
estimated from responses to stationary stimuli neglect these
adaptive mechanisms, and, thus, are insufficient to characterize
function in the natural environment.

One approach that has been employed to characterize adap-
tive sensory encoding mechanisms from stimulus/response ob-
servations is recursive least-squares (RLS) estimation [9], [10].
In RLS, the estimated parameters of the encoding model are up-
dated with each new observation, while the influence of past ob-
servations is downweighted, allowing the estimate to reflect the
current state of the underlying system. However, in the standard
RLS approach, a number of assumptions are made concerning
the underlying system, and these assumptions limit the ability of
RLS to track fast variations in model parameters. Additionally,
the fixed learning rate in the standard RLS approach requires a
trade-off between the ability to track parameter changes and the
steady-state error level in the estimate.

In this paper, we develop an extended recursive least-squares
(ERLS) approach to adaptive neural system identification to ad-
dress these problems. The ERLS approach incorporates a sto-
chastic model of parameter evolution (based on that which un-
derlies the Kalman filter) and an adaptive learning rate that is
modulated in response to changes in features of the visual stim-
ulus. We use ERLS to analyze simulated and experimental re-
sponses of visual neurons to stimuli of varying complexity and
demonstrate its ability to closely track adaptive changes in RF
structure induced by nonstationary stimulus conditions during a
single trial.

1534-4320/$20.00 © 2005 IEEE



LESICA AND STANLEY: IMPROVED TRACKING OF TIME-VARYING ENCODING PROPERTIES OF VISUAL NEURONS

Stimulus

195

Response

Fig. 1.

Model of visual encoding. The spatiotemporal visual stimulus s is passed through a time-varying linear filter ¢ (the spatiotemporal RF) to yield the

intermediate signal y. This signal is then combined with additive, independent noise v to yield the generating function z, and passed through a rectifying static

nonlinearity f to produce the nonnegative firing rate A.

II. MODEL OF SENSORY ENCODING

The development of the ERLS algorithm and the examples
in this paper are based on the properties of neurons in the early
visual pathway, but the results are easily generalized to other
sensory systems. The mapping from stimulus to response in a
visual neuron can be represented by a cascade of encoding el-
ements consisting of a linear filter and a rectifying static non-
linearity. A schematic diagram of a cascade encoding model is
shown in Fig. 1. Each component of the cascade model is de-
scribed later in detail.

A. Spatiotemporal Receptive Field

The input is the spatiotemporal signal s[p, n]. For computer
driven visual stimuli discretized in space-time, p represents the
grid index of a pixel on the screen and n is the time sample. Note
that pixel refers not to the atomic display units of the monitor,
but, forinstance, to squares in a white-noise checkerboard. No as-
sumptions are made about the statistics of the stimulus, as natural
signals are often nonstationary and correlated. To produce the
intermediate signal y, which reflects the stimulus-related mod-
ulations in the membrane potential of the neuron, the stimulus
is passed through the time-varying linear filter g, [p, m] (convo-
lution in time, integration in space) representing P (total pixels
in stimulus) separate temporal filters each with M parameters.
This filter is known as the spatiotemporal RF and captures the
spatial and temporal integration of the stimulus within the vi-
sual pathway. If s and g,, are organized appropriately, then this
discrete time operation can be written as a dot product y[n] =
52; gn, Where s,, and g,, are the column vectors defined as

sné[s[P,n—M—i—l],s[P—17n—M+1]7...,
s[l,m — M +1],s[P,n — M + 2]

gn é[.grl[[)7]\4]7.grl[[)_ 17M],
gn[l, M], g [P, M —1],..., gul[1, 1]]T

@
and 7" denotes matrix transpose.

B. Additive Noise

Before being passed through the static nonlinearity, y is com-
bined with additive noise v to yield z, which is known as the
generating function. The noise v represents spontaneous fluctu-
ations in the membrane potential of the neuron, which are re-
flected in the variability of firing rate responses to repeated pre-
sentations of the same stimulus. These fluctuations have been
shown to be uncorrelated over time and independent of the base-
line membrane potential of the neuron, with a distribution that

is approximately Gaussian [11]. Thus, the noise v is assumed
to be independent of the stimulus and Gaussian with zero mean

N(0,02[n)).

C. Static Nonlinearity

The generating function z is passed through a static nonlin-
earity f(-) to yield the nonnegative firing rate A. This static non-
linearity captures the transformation from the membrane poten-
tial of the neuron to its observed firing rate. A common model
for the nonlinearity present in many experimentally observed
visual neurons is linear half-wave rectification [12]

z2>0
z2<0° 3)
The linear rectifying static nonlinearity implies that the neuron
is silent when the membrane potential is below a threshold and
that modulations in the membrane potential above that threshold
are reflected as proportional modulations in firing rate. Note,
however, that the ERLS algorithm is developed for a general
static nonlinearity f(-) and the specific form of the function
should be chosen to match the properties of the neuron under
investigation [13].

III. RECURSIVE ESTIMATION

The basic premise of recursive system identification is that
the estimate of the underlying parameters at time n + 1 is com-
puted by combining the previous estimate from time n with an
update based on the new observation and prior knowledge of
the evolutionary dynamics of the parameters. RLS estimation is
one particular form of this approach that has been used success-
fully to characterize the encoding properties of visual neurons
[9], [10].

A. RLS Estimation

We have previously detailed an RLS technique for identifying
the encoding properties of visual neurons based on a model
structure such as the cascade shown in Fig. 1 [9]. The RLS al-
gorithm is based on the minimization of the prediction error,
which is defined as the difference between the observed firing
rate in an interval, and the expected firing rate in the interval
given the current stimulus and the estimated model parameters.
In the model shown in Fig. 1, the only parameters to be estimated
are those of the RF g,,. Note, however, that the estimation tech-
niques described in the following are easily adapted to include
simultaneous estimation of the RF and other parameters [14].
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Using the variables defined in the encoding model shown in
Fig. 1, the RLS algorithm for the estimation of the RF parame-
ters can be written as follows:

e[n]=A[n] = f (53 0nn-1)
7_1Kn|n—15n

Fyilsrq:KnhL—lSn +1

gn+1|n :gn\nfl + Gne[n]

Prediction Error

Gn=

Update Gain

Update Parameter
Estimates

Kpitpn=7""Kpjn-1 — Update Inverse of

v 1G, SZK nn—1 Stimulus Autocovariance

where 0 < v < 1 serves to downweight past information, and
is, therefore, often called the forgetting factor. At each time step,
the gain G is calculated based on the estimate of the inverse
of the stimulus autocovariance matrix K and combined with
the prediction error e to update the RF parameter estimate .
Note, however, that the recursive framework avoids the explicit
inversion of the stimulus autocovariance matrix. The subscript
n|n — 1 denotes an estimate at time n given all observations up
to and including time n — 1.

The prediction error e is the difference between the observed
and predicted firing rates. Given the stimulus and the current
estimate of the RF, the expected firing rate is

E {N0llsn,apn-1} = [ Alnlp (Nllsa. Gapu-) dAl]
= [ £ (sEdnns + ol p ol o]

where p(A[n]|s,, Gnjn—1) is the probability density function of
the predicted response conditioned on the current stimulus and
estimated model parameters. For small v relative to sff]n‘n,l,
the expectation can be approximated as E{A[n]|s,, Gnjn—1} =
f(sggnm_l) through a series expansion about sfﬁnm_l. This
approximation is valid when the signal-to-noise ratio (SNR) is
large (>2), as is typically the case in visual neurons under dy-
namic stimulation. In the event that this approximation is not
valid, the integral expression for the expected firing rate can be
evaluated at each time step.

The dynamics of the system shown in Fig. 1 can be repre-
sented by the following state-space model:

In+1 = ann + qn (4)
Mnl = f (spgn +vln]) (5)

where F,, (known as the state evolution matrix) and ¢,, (known
as the state evolution noise) specify the deterministic and
stochastic components of the evolutionary dynamics of the
RF parameters, respectively. Investigation of the model under-
lying RLS reveals that the technique is designed to estimate
time-invariant RF parameters (F,, = I and ¢,, = 0) based on
the assumption that the variance of the noise in the observed
response decreases exponentially over time (02[n] o 4™) [15].
This assumption causes the current observations to be weighted
more heavily in the computation of the parameter estimates
than those in the past, and provides RLS with the ability to

track a slowly varying RF. However, as the parameters change
more quickly, the ability of RLS to track them decreases.
The tracking behavior of the RLS algorithm can be greatly
improved by assuming a model in which the RF parameters are
time-varying and their evolution is treated as a more general
stochastic process.

B. ERLS Estimation

The optimal algorithm for tracking the time-varying param-
eters of a state-space model, in terms of minimizing the mean-
squared error (MSE), is the Kalman filter [16]. However, im-
plementation of the Kalman filter requires exact knowledge of
the quantities F),, ¥,[n] (the covariance of the state evolution
noise), and o2[n], which are generally unknown during the ex-
perimental investigation of neural systems. Fortunately, some of
the tracking ability of the Kalman filter can be transferred to the
RLS framework by replacing the deterministic model that un-
derlies RLS estimation with a stochastic one that approximates
that which underlies the Kalman filter. The result, known as ex-
tended recursive least-squares (ERLS), was developed in [15]
based on the correspondence between RLS and the Kalman filter
presented in [17]. Here, we develop a particular form of ERLS
that is designed to track adaptation of visual encoding proper-
ties in response to changes in the statistical properties of the
stimulus.

The model underlying the Kalman filter assumes that the
RF parameters evolve according to the general model ¢,11 =
F.gn + qn, where g, is a vector of nonstationary Gaussian
white-noise N (0, 3, [n]). To simplify the incorporation of this
model into the RLS framework, assume that the parameter evo-
lution is completely stochastic (F,, = I) and that the parameters
evolve independently and at equal rates (X,[n] = oZ[n]I). In
this stochastic model, the evolution of the parameter estimates
is constrained only by the variance 03 [n], and this parameter
can be used to control the tracking behavior of the algorithm
based on knowledge of the underlying system. When the
prediction error is likely to be the result of changing encoding
properties (during adaptation to changes in the statistics of the
stimulus), a large value of o7 [n] is used to allow the estimate to
track these changes. Conversely, if the parameters are not likely
to be changing, a small value of 03 [n] is used to avoid tracking
the noise in the observed response. Thus, Jg [r2] functions as an
adaptive learning rate.

The value of o [n] is adjusted based on knowledge of how
features of the stimulus affect the parameters. For example,
adaptation in the visual system generally occurs in the interval
directly following a change in a feature of the stimulus (mean,
variance, etc.). With this knowledge, (7,12 [n] is increased fol-
lowing a stimulus transition, allowing the parameter estimate to
change quickly. Similarly, if the statistics of the stimulus have
been stationary for some time and the underlying parameters
are not likely to be adapting, 02 [n] is decreased. The dynamics
of the adaptive learning rate should be based on knowledge
of the adaptive properties of the system under investigation,
reflecting the expected rate of change (per estimation time step)
of the parameters under the given stimulus conditions. For a
situation where the relevant stimulus feature or the adaptive
properties are not known a priori, (72 [n] should be set to a
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relatively small constant value throughout the trial. This gives
the estimate some degree of adaptability (although fast changes
in parameter values will likely be missed), while keeping the
steady-state noise level in a reasonable range. The initial esti-
mate provides some information about the adaptive behavior of
the system, and the estimation can be performed again with a
more appropriate choice of 03 [n]. This process can be iterated
and, as more is learned about the adaptive dynamics of the
underlying system, the value of o2[n] can be updated. For
further discussion of the choice of ag [n], see Section V.

a
The ERLS algorithm for the model in Fig. 1 is given by

e[n]=Aln] = f (53 Gnjns)
G. — Kn\n—lsn
n_ngn‘n_lsn +1

gn+1|n :gn\nfl + Gne[n]

Prediction Error
Update Gain

Update Parameter
Estimates

Ko1jn=Knpn-1 — Update Inverse of

GnsZKnm,l —l—ag [#]I Stimulus Autocovariance.

Again, the estimate is generated by solving the above equa-
tions sequentially at each time step. If possible, the algorithm
should be initialized when the underlying system is at steady
state and the parameter values are known. In the absence of any
prior knowledge of the parameter values, the initial conditions
Joj—1 = 0and K|, = ¢ x I should be used. The regularization
parameter ¢ effects the convergence properties and steady-state
error of the ERLS estimate by placing a smoothness constraint
on the parameter estimates, removing some of the error intro-
duced by highly correlated natural stimuli [18]. For estimation
from responses to uncorrelated white-noise stimuli in the exam-
ples below, § was set to 10~%. For estimation from responses to
correlated naturalistic stimuli, 6 was set to 10™2. Note that the
ERLS algorithm can easily be extended to simultaneously esti-
mate the encoding properties of an ensemble of neurons simply
by augmenting the stimulus, parameter, and response vectors ac-
cordingly. For example, an adaptive estimation technique sim-
ilar to the ERLS approach presented here has been used to esti-
mate the RF parameters of an ensemble of motor neurons from
responses to changes in hand velocity [19].

IV. SIMULATIONS

In the following simulations, examples of adaptive encoding
in retinal ganglion cells are used to demonstrate the ability of
ERLS to track changes in RF parameters during nonstationary
stimulation. Ganglion cells are the output neurons of the retina
and provide the only pathway for the transmission of visual in-
formation from the retina to the brain. Responses to a variety
of nonstationary stimuli were simulated using the cascade en-
coding model shown in Fig. 1, which has been shown to provide
accurate predictions of ganglion cell responses [20].

A. Comparison of RLS and ERLS

A biphasic temporal RF typical of retinal ganglion cells,
with a time course of 300 ms, was used in the cascade encoding
model shown in Fig. 1 to simulate responses to a contrast
switching, spatially uniform Gaussian white-noise stimulus. A
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Fig. 2. Comparison of RLS and ERLS. (A) The gain of the actual RF (gray)
along with the gain of the RLS estimate (black) for a 160-s segment of the
contrast-switching white-noise stimulus. The value of the forgetting factor
used to compute the RLS estimate was 0.96. The MSE in the RF estimate over
the entire trial was 10.4% of the variance of the actual RF. (B) The gain of the
actual RF along with that of the ERLS estimate, computed with 0[] = 10~°
for the entire trial. The MSE in the RF estimate over the entire trial was 7.6%.
(C) The gain of the actual RF along with that of the ERLS estimate, computed
with o2 [n] = 10~* for the 1 s following each contrast transition, and 10~ at
all other times. The MSE in the RF estimate over the entire trial was 5.1%.

new luminance value for the stimulus was chosen every 30 ms
and the root mean square (RMS, ratio of standard deviation
to mean) contrast was switched from 0.05 to 0.30 every 30 s.
Contrast gain control has been shown to modulate the RF gain
of visual neurons in response to changes in stimulus contrast,
with a time course that is approximately equal to the integration
time of the neuron [21], [22]. To simulate the adaptive changes
that have been observed experimentally, the gain of the RF
(magnitude of peak value) was increased by a factor of 2
following a decrease in contrast, and decreased by a factor of
2 following an increase in contrast. The variance of the noise
v was adjusted to produce responses with an SNR of 5. This
value is consistent with those measured in the experimental
responses of retinal ganglion cells [14].

ERLS and standard RLS were used to track changes in the
RF parameters from the simulated responses. The results are
shown in Fig. 2. Fig. 2(A) shows the gain of the actual RF (gray),
along with the gain of the RLS RF estimate (black). The RLS
estimate was generated with forgetting factor v = 0.96 (which
corresponds to a memory time constant of approximately 7 s).
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This value was optimal in the sense that it yielded the lowest
MSE in the RF estimate (10.4% of the variance of the actual
RF) over the entire trial for all 0 < v < 1.

Fig. 2(B) shows the gain of the actual RF, along with the gain
of the ERLS RF estimate, computed with a fixed learning rate
o2[n] = 107, This value of o2 [n] was also chosen to minimize
the MSE in the RF estimate over the entire trial. The MSE in the
ERLS estimate with fixed learning rate (7.6%) is lower than that
of the optimal RLS estimate, illustrating the enhanced tracking
ability that results from incorporating the stochastic model of
parameter evolution.

The tracking performance of the ERLS estimate can be fur-
ther improved by using an adaptive learning rate to exploit
the relationship between the stimulus and the adaptive nature
of the system. Since contrast gain control only modulates the
gain of the RF in the short interval following a change in con-
trast, the learning rate ag [n] is set to a large value in those
intervals to allow the estimate to adapt quickly, and to a small
value otherwise, so that noise in the observed response is not
attributed to changes in the encoding properties of the neuron.
Accordingly, o [n] was set to 10™* during the transient inter-
vals (1 s following each contrast transition), and 10~ during
steady-state intervals (all other times). The gain of the resulting
RF estimate is shown in Fig. 2(C). The adaptive learning rate
allows the estimate to closely track the fast changes in gain,
while maintaining a low steady-state error between transitions.
The MSE in the ERLS estimate with adaptive learning rate
(5.1%) is half of that in the standard RLS estimate. The values
of o7[n] used to generate the ERLS estimate with an adap-
tive learning rate were chosen based on the adaptive dynamics
of the simulated neuron, but were not optimized. Similar re-
sults were obtained with a range of values for (72 [n] during
the transient and steady-state intervals (not shown), indicating
the robust improvement in tracking provided by the adaptive
learning rate.

B. Tracking RF Modulation During Natural Stimulation

In a natural setting, tracking RF changes is complicated by
the lack of clear transitions in the relevant stimulus features
(as opposed to the contrast-switching example above). The fol-
lowing contrast gain control simulation demonstrates the ability
of ERLS to track RF modulation from responses to a stimulus
with continuously varying statistics. The stimulus was the tem-
poral intensity of one pixel of a grayscale natural scene movie
recorded in the forest with a home video camera, updated every
30 ms, as shown in Fig. 3(A). For more details regarding the
natural scene movie, see [23]. For this example, a stimulus was
chosen in which the mean intensity was relatively constant over
time, while the contrast was constantly changing. The response
of a retinal ganglion cell was simulated as above. The gain of
the temporal RF was varied inversely with the contrast of the
stimulus, and, thus, varied continuously throughout the trial. At
each time step, the contrast was defined as the RMS contrast
of the previous 300-ms segment of the stimulus, in accordance
with the time course of contrast gain control [Fig. 3(B)], and the
gain of the RF was set to twice the inverse of the contrast. Since
the contrast of the stimulus was constantly varying and transi-
tions were not well defined, the value of the adaptive learning
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Fig. 3. Tracking RF modulation during natural stimulation. (A) The stimulus
was spatially uniform and the luminance was modulated according to the
intensity of a typical pixel in a natural scene movie, updated every 30 ms.
(B) The RMS contrast of the natural stimulus throughout the trial. (C) The
value of the learning rate o2 [n] throughout the trial. (D) The gain of actual
RF during the simulation is shown (gray), along with the gain of the ERLS RF
estimate (black).

rate 03 [n] was proportional to the derivative of the stimulus con-
trast, as shown in Fig. 3(C). At each time step, 02 [n] was defined
as 10™* times the absolute value of the first-order difference in
the contrast of the stimulus. Fig. 3(D) shows the results of the
estimation. The gain of the ERLS RF estimate (black) closely
tracks that of the actual RF (gray). Aside from the error associ-
ated with the initial conditions and some of the very fast tran-
sients, the ERLS RF estimate captures most of the gain changes
in the actual RF.

C. Tracking Contrast Gain Control in the Retina

The tracking ability of the ERLS technique can be demon-
strated under experimental conditions using the response of a
retinal ganglion cell to a contrast switching stimulus. Spatially
uniform Gaussian white-noise was projected onto an isolated
salamander retina and ganglion cell action potentials were
recorded extracellularly. These experiments were performed in
the laboratory of Markus Meister at Harvard University and
details of the preparation are given in [20]. A new luminance
value for the stimulus was chosen every 30 ms and the RMS
contrast was switched from 0.05 to 0.3 every 30 s [see Fig. 4(A)
and (B)]. As described in example A, contrast gain control is
known to modulate gain in the short interval following a change
in contrast. Thus, the learning rate ag [n] was set to 10~ * during
the transient intervals (1 s following each contrast transition),
and 107¢ during steady-state intervals (all other times), as
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Fig.4. Tracking gain changes in the retina. Experimentally observed responses
of a salamander retinal ganglion cell to a contrast switching stimulus were used
for adaptive estimation of encoding properties. (A) Three minutes of the spatially
uniform Gaussian white-noise stimulus. A new luminance value for the stimulus
was chosen every 30 ms. (B) The contrast of the stimulus was switched between
0.05 and 0.3 every 30 s. (C) The adaptive learning rate of the ERLS algorithm,
o2[n], was set to 10~* during the 1 s following each contrast transition, and
10~ during all other times. (D) The gain of the ERLS RF estimate.

shown in Fig. 4(C). The ERLS estimate tracks the changes
in gain following stimulus transitions during a single trial, as
shown in Fig. 4(D). Note that in this example, an additional
offset parameter was estimated simultaneously with the RF to
account for contrast induced changes in baseline membrane
potential (not shown, for details see [14]).

V. CONCLUSION

In this paper, an ERLS approach to the identification of adap-
tive neural encoding properties was developed for use under
nonstationary stimulus conditions. ERLS removes the simpli-
fying assumptions of stimulus stationarity and time-invariance
of the stimulus/response mapping that underly traditional
RF estimation approaches. ERLS is an extension of standard
RLS estimation with improved tracking abilities due to its
incorporation of a stochastic model of parameter evolution
and adaptive learning rate. Simulated and experimental ex-
amples demonstrated the superiority of ERLS to standard
RLS in tracking changes in encoding properties during con-
trast-switching stimulation and the ability of ERLS to track
adaptation under highly nonstationary stimulus conditions.
Other studies have shown that ERLS outperforms both standard
RLS and least-mean-square (LMS) estimation in a variety of
nonstationary system identification problems, such as tracking
a chirped sinusoid in noise [15].

The ERLS algorithm that we have presented requires speci-
fication of the learning rate parameter 02 [n]. In the form of the
algorithm that we presented, the value of this parameter is varied
externally to match the adaptation dynamics of the system under
investigation. The ERLS technique could be made more pow-
erful by specifying a relationship between stimulus features and
adaptation in the underlying system, such that the value of 02 [n]
could be controlled by the algorithm internally based on changes
in the relevant stimulus features. In the text, we described an it-
erative procedure for optimizing the learning rate when little is
known about the adaptive dynamics of the underlying system.
The internal control of the learning rate could be taken one step
further by automating this iterative process such that the rela-
tionship between changes in the relevant stimulus features and
the learning rate is also optimized during this process. In this
form, the ERLS algorithm would be extremely powerful, as it
would require no a priori specification of adaptation dynamics
and would produce not only time-varying estimates of the model
parameters, but also a description of the relationship between
changes in stimulus features and adaptation of these parame-
ters.

While single trial changes in the ERLS parameter estimates
reflect changes in the underlying system, they are also influ-
enced by a number of other factors, including the SNR in the re-
sponse measurements, the correlation structure of the stimulus,
and the learning rate 03 [n]. As aresult, it is desirable to develop
some measure of confidence in the parameter estimates to deter-
mine what fraction of the changes should be attributed to adap-
tive function. If the SNR of the measurements and the degree
of the nonstationarity of the system can be specified a priori,
then confidence bounds can be determined analytically, as in the
Kalman filter [16]. A more practical approach is to record the
neural responses to repeated presentations of the same stimulus
and estimate the parameters with ERLS independently for each
trial. The mean of these estimates will reflect actual changes in
the underlying system and the variance of these estimates can be
used as a measure of confidence in other single trial estimates
under similar experimental conditions.
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