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Recent advances in multi-electrode recording and imaging techniques have made it possible to observe
the activity of large populations of neurons. However, to take full advantage of these techniques, new
methods for the analysis of population responses must be developed. In this paper, we present an
algorithm for optimizing population decoding with distance metrics. To demonstrate the utility of this
algorithm under experimental conditions, we evaluate its performance in decoding both population
spike trains and calcium signals with different correlation structures. Our results demonstrate that the
optimized decoder outperforms other simple population decoders and suggest that optimization could
serve as a tool for quantifying the potential contribution of individual cells to the population code.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of new multi-electrode recording
and imaging techniques, it is now possible to record the
activity of large neuronal populations simultaneously. While these
techniques have already facilitated many important discoveries,
the development of new methods for analyzing population
activity is required before the full potential of these techniques
can be realized. In sensory neuroscience, one of the most
powerful methods for analyzing neuronal responses is decoding
- using the responses to infer which stimulus evoked them - to
determine how different stimulus features are represented in the
responses (for a recent review, see Quian Quiroga and Panzeri
(2009)). The classical approach to decoding involves estimating
the probability distribution of the stimulus conditioned on the
observed responses to determine which stimulus was most likely.
However, the explicit estimation of this distribution may be
difficult in experimental situations where data are limited and the
responses are high dimensional (i.e. for example, a large population
of cells for which the relevant feature of the responses are the spike
times rather than simply the spike rates).

For decoding responses from single cells, several methods have
overcome the dimensionality problem by using distance metrics
(van Rossum, 2001; Victor & Purpura, 1996) and these methods
have been used successfully in a number of experimental contexts
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(Victor, 2005). Distance metrics not only provide an intuitive
method of decoding (responses evoked by the same stimulus
should be ‘close’ to each other, while responses evoked by different
stimuli should be ‘far’ from each other), but can also be related
to the classical approach under simplifying assumptions: If each
response is represented as a point in multi-dimensional space and
the distribution of the responses evoked by repetitions of the same
stimulus within that space is assumed to be Gaussian, then the
log likelihood that a response was evoked by a particular stimulus
(assuming that all stimuli are equally likely) is proportional to the
square of its distance from the average of all responses evoked by
that stimulus.!

Previous attempts to extend decoding with distance metrics
to population responses have focused on the extent to which
decoding performance is dependent on cell identity, i.e. whether
performance differs if all spikes are assumed to come from a single
neuron (Aronov, Reich, Mechler, & Victor, 2003; Houghton & Sen,
2008). In this study, we investigate how varying the influence, or
weight, of each cell affects population decoding performance. The
choice of weight for each cell is a complex problem, and should
be based not only on how informative the response of each cell is
individually, but also on the correlations between the responses
of each cell and the others in the population. This problem can
be illustrated through a simple example of averaging: For a series

1 Note that, under these assumptions, the log likelihood is proportional to the

square of the distance only when the distance metric is Euclidean. However,
for some non-Euclidean metrics, a similar relationship may be achievable by
introducing a different exponent (Aronov & Victor, 2004).
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of measurements in which the noise in each measurement is
independent and of equal magnitude, standard averaging yields
the optimal estimate of the underlying signal. If the magnitude of
the noise varies across measurements, then some measurements
will be more reliable than others, and a weighted average based
on this reliability will yield the optimal estimate. However, if
the noise in a fraction of the measurements is correlated, then
averaging across those measurements will be less effective in
reducing the noise (in the extreme of identical noise, averaging
has no effect) and a weighted average that favors the uncorrelated
measurements may provide the optimal estimate, even if the
correlated measurements are individually more reliable. As with
averaging, the optimal weights for population decoding with
distance metrics are dependent on both the individual reliability of
cells in the population and the correlations between them. In this
study, we describe an algorithm to find these optimal weights and
demonstrate its utility by decoding experimental responses with a
variety of correlation structures.

2. Decoding with distance metrics

We define the set of responses from cell p in response to I tri-
als of S different stimuli as rP!, where § = {1,2,...,S}and I =
{1, 2,...,1}. To decode the response evoked by trial i of stimulus
s, rPSi we remove it from the set and infer which stimulus evoked
it, $(rP*). Assuming we have a metric for quantifying the distance
between two responses, d(r?*, rpsl"/), then we can determine the
average distance from r? to the responses evoked by all trials of

agiven stimulus s, dy (r"™)) = <d(r"5i, rpsl"/)> , with trial i excluded

i/

to avoid overfitting when s = s, and choose the stimulus for which
this average distance is minimal, $(r") = arg miny s dy (r**') [note
that in the equation for d, an exponent can be introduced inside
the expectation to bias the result toward larger or smaller val-
ues]. This approach is easily extended to decode the responses
P! from a population of cells P = {1, 2, ..., P}. To decode the
responses from the population of cells P in response to trial i
of stimulus s, r™, we choose the stimulus for which a weighted
sum of the average distances for each cell is minimal, HGEI
arg ming ¢ ZpeP wPdy (rP). The central question in this study is
how to choose the weights w = [w!, w?, ..., w"] so as to maxi-
mize decoding performance.

2.1. Optimization of decoder weights

After decoding the spike trains for every trial of every stimulus
as described above, we measure overall performance as the percent
of spike trains that were correctly decoded and denote this
quantity as PC, for a single cell p, and PCp(w) for the population
P with weights w. The standard approach to finding the optimal
set of weights, i.e. the set of weights that maximize PCp(w), is to
calculate the gradient dPCp(w)/dw and use it as a guide toward a
local, and hopefully global, maximum. However, for the particular
problem considered here, analytical specification of the gradient
was not possible and algorithms that calculated the gradient
numerically performed very poorly. Fortunately, there is another
class of algorithms known as ‘evolutionary’ that do not require
knowledge of the gradient. These algorithms operate iteratively,
choosing the best of several candidate solutions on each iteration
until performance saturates. While there are many evolutionary
algorithms that may be suitable for this particular problem, we
chose to implement two of the most common, genetic and particle
swarm. As illustrated in the examples below, the performance of
these algorithms was similar. However, the genetic algorithm was
superior in that it required less computation time and is easily
implemented via the Genetic Algorithm and Direct Search Toolbox

in Matlab (The Mathworks, USA), and, thus, we describe only
its implementation in detail here. Details of the particle swarm
algorithm can be found in Kennedy, Eberhart, and Shi (2001).

The genetic algorithm for optimization begins by creating a
population of y random vectors of length p, drawn with uniform
probability from the interval [0, 1], and computing PCp(w) for
each vector. Next, the population is evolved in three steps: First,
e ‘elite’ vectors, those with the highest PCp (w), are moved to the
next generation. Next, x ‘crossover’ vectors are created by random
recombination between two ‘parent’ vectors from the current
population, with the probability of a particular vector being chosen
as a parent proportional to its PCp (w). Finally, u ‘mutant’ vectors
are created by adding random noise n ~ N(0, o) to a parent vector,
with parent vectors chosen as above. The standard deviation of
the noise 0 = 1 for the first generation and is decreased linearly
with each successive generation such that ¢ = 0 if the algorithm
runs to completion. The algorithm stops after either completing V
evolution generations or when the change in the highest PCp(w)
over the past G generations is less than . The set of weights
with the highest PCp(w) after the completion of the algorithm is
denoted wgenetic. For the examples in this study,y = 25,e = 2,x =
18,u = 5,V = 100, G = 25,and ¢ = 107>, in accordance with
the suggested default parameters for the ga function in Matlab.

As a baseline for comparison with wgenetic, we also computed
the optimal weights wgyarm Via particle swarm optimization, and
used two other simple weighting schemes: Wequar = 1, where
all cells are weighted equally, and wpercorr = [PCq, PGy, ..., PGy],
where the weights are determined by the overall performance of
each cell when its responses are decoded individually. To prevent
overfitting, it is important to exclude the responses to be decoded
when optimizing the weights. For all optimizations, we split the
responses into successive training sets (95% of responses) and
testing sets (5% of responses) such that all responses were included
in the testing set exactly once.

3. Decoding experimental spike trains

To illustrate the utility of the optimization algorithm under
experimental conditions, we decoded spike trains from P = 34
cells recorded in the inferior colliculus of anesthetized gerbils in
response to the presentation of I = 20 trials of S = 8 different
sounds (different instances of Gaussian white noise). The details
of the experimental procedures can be found in Lesica and Grothe
(20084, 2008b).

We decoded the spike trains using the metric introduced by
Victor and colleagues (Victor & Purpura, 1996), which measures
the distance between two spike trains as the overall cost of the
set of operations required to transform one spike train into the
other, with possible operations including the insertion of a spike,
the deletion of a spike, and the time-shift of a spike (software
available at http://neuroanalysis.org/toolkit). By changing the cost
of time-shifting a spike relative to deleting the spike at one time
and inserting it at another, the metric can be used to evaluate the
distance between spike trains at different timescales. The details
of the implementation of the metric are not given here, but can be
found in Aronov (2003) and Victor and Purpura (1996).

A 10 ms segment of the set of spike trains rP! for a typical
cell is shown in Fig. 1(a) along with the decoding performance for
the individual responses of each cell as a function of the response
timescale parameter of the decoder (decoded responses were
100 ms in duration). The median best timescale, i.e. the timescale
that yielded the best decoding performance, across the sample
of cells was 2 ms (black arrow) and, for simplicity, we fixed the
response timescale at this value for all decoding of these responses.

The distribution of significant pairwise correlation coefficients
for the population (computed at a timescale of 2 ms) is shown
in Fig. 1(b). The total correlation (o) Was significant between
approximately half of the cell pairs (262 of 561). Correlations
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Fig. 1. Decoding population spike trains. (a) A raster plot showing the spike trains of a neuron in the inferior colliculus of an anesthetized gerbil in response to I = 20
trials of S = 8 different sounds and decoder performance (percent correct, PC) as a function of decoder response timescale for the responses of each individual cell. The
black arrow indicates the population median best timescale. (b) Histograms of the correlation coefficients between pairs of cells (P = 34). Correlation coefficients were
estimated after converting the spike trains to binary vectors with a temporal resolution of 2 ms. Only significant correlations (p < 0.05) are shown. The total correlation
(protal) was computed directly from the responses, the signal correlation (psignal) Was computed from the responses after randomizing the trial order, and the noise correlation
(pnoise) was computed as the difference between pyorar and psignar- (¢) The decoder performance PCp (w) for subpopulations of increasing size for four sets of weights: wequal
(all weights equal), wpercorr (Weights based on individual performance), wgenetic (Weights optimized with genetic algorithm), and wsyarm (Weights optimized with particle
swarm algorithm). The circles and bars indicate the mean and standard error of the performance for 100 different random subpopulations. (d) The weights wgenetic resulting
from 10 different optimizations with random initial values in the population y for a particular subpopulation of 16 cells. The lines indicate the weights for each individual
optimization and the circles and bars indicate the mean and standard deviation. The dummy cell is indicated by the filled black circle. (e)-(h) Results for a second set of
responses of the same cells to the same sounds, with a different random background noise added to each sound on each trial, presented as in (a)-(d).

between cells can have both signal and noise components: signal
correlations arise from correlations in the stimulus itself and/or
similarity in preferred stimulus features (frequency, orientation,
etc.), while noise correlations arise from shared inputs that
contribute to the trial to trial variability in responses. In this
set of responses, most of the total correlation was due to signal
correlations (in fact, because most of the cells were not recorded
simultaneously, the population is expected to contain few noise
correlations).

The decoder performance PCp(w) for subpopulations of in-
creasing size is shown in Fig. 1(c) for four sets of weights: wequal
(all weights equal), Wpercorr (Weights based on individual perfor-
mance), Weenetic (Weights optimized with genetic algorithm), and
Wswarm (Weights optimized with particle swarm algorithm). For
population decoding, only 10 ms segments of the responses were
used in order to increase the difficulty of the decoding task. While
the decoder performance was similar for all sets of weights for
small population sizes, genetic and particle swarm optimization
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provided a performance increase of approximately 10% for large
populations.

To determine whether optimization produced global optima,
we used the genetic algorithm to find the optimal weights for a
given set of responses using 10 different initial populations y. In
each set of responses, we also included a ‘dummy cell’ for which the
stimulus identity associated with each response was randomized.
As illustrated in Fig. 1(d) for a particular subpopulation of P = 16
cells, the genetic algorithm converges to approximately the same
set of optimal weights wgeneric independent of the initial values in
the population y and the weights associated with the dummy cell
(filled black circle) were always near zero. These results suggest
that the set of weights produced by the genetic algorithm is
indeed the global optimum and that the algorithm is successful in
minimizing the contribution of uninformative cells.

For the same cells, we also recorded responses to the same
sounds in the presence of background noise. Because a different
background noise was added on each trial, and this noise was
the same for all cells, the background noise served to reduce
signal correlations and introduce noise correlations. The set of
spike trains rP! for a typical cell is shown in Fig. 1(e) along with
the decoding performance for the individual responses of each
cell as a function of the response timescale (decoded responses
were 100 ms in duration). While the background noise resulted
in considerable variability in the spike trains evoked by the same
stimulus, the median best timescale was again 2 ms and we fixed
the response timescale at this value for all decoding of these
responses.

The distribution of significant pairwise correlation coefficients
for the population is shown in Fig. 1(f). Again, the total correlation
(protal) Was significant between approximately half of the cell
pairs (299 of 561), but for this set of responses, most of the total
correlation was due to noise correlations.

The decoder performance for the population PCp(w) for
subpopulations of increasing size is shown in Fig. 1(g) for
Wequal, Wpercorr» AN Weenetic, Wswarm. FOr population decoding,
only 30 ms segments of the responses were used in order to
increase the difficulty of the decoding task. As in the previous
example, performance was similar for all sets of weights for
small population sizes, but optimization provided a substantial
performance increase for large populations and, as shown in
Fig. 1(h), optimizations with different initial values in the
population y produced similar sets of weights with values near
zero for the dummy cell. Taken together, the results in Fig. 1
demonstrate that the optimization algorithm was effective for
decoding population spike trains under experimental conditions
when the responses contained both signal and noise correlations.

4. Decoding experimental calcium signals

To further illustrate the utility of optimization under exper-
imental conditions, we also decoded calcium signals (relative
change in indicator florescence) from P = 37 cells recorded in the
visual cortex of anesthetized mice in response to the presentation
of I = 18 trials of S = 8 different oriented sinusoidal gratings
(each grating was displayed for 2 s at 50% contrast and drifted at
arate of 2 Hz; calcium signals were sampled at 15 Hz). The details
of the experimental procedures can be found in Mrsic-Flogel et al.
(2007).

The set of calcium signals rPT for a typical cell is shown
in Fig. 2(a). The top image gives an overview of the dynamics
and reproducibility of the signals as the orientation of the
grating changed (the order of the orientations was the same
on each trial), while the lower plots show the signals in detail
for two particular orientations. The distribution of significant
pairwise correlation coefficients for the population (computed at
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Fig.2. Decoding population calcium signals. (a) Top: an image showing the calcium
signal (relative change in indicator florescence) of a neuron in the visual cortex of
an anesthetized mouse in response to I = 18 trials of S = 8 different oriented
gratings. Bottom: the calcium signals for the same neuron in response to two
particular orientations. Gray lines indicate the signal for each trial and the black line
indicates the mean. (b)-(d) Histograms of the correlation coefficients between pairs
of cells (P = 37), decoder performance PCp(w) for subpopulations of increasing
size for four sets of weights: wequal, Wpercorr» Weenetic» aNd Wswarm, and the weights
Weenetic Tesulting from 10 different optimizations with random initial values in the
population y for a particular subpopulation of 16 cells, presented as in Fig. 1.
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a timescale of 66 ms) is shown in Fig. 2(b). The total correlation
(protal) Was significant between most of the cell pairs (560 of 666)
and contained both signal and noise components (all cells were
recorded simultaneously).

We decoded the calcium signals using the Euclidean distance
metric d(rP, Py = | — 77| The decoder performance
PCp(w) for subpopulations of increasing size is shown in Fig. 2(c)
for wequal, Wpercorr» aNd Wgenetic» Wswarm. AS with spike trains,
performance was similar for all sets of weights for small
populations, but optimization improved performance for large
populations and, as shown in Fig. 2(d), optimizations with
different initial values in the population y produced similar sets of
weights with values near zero for the dummy cell. These results
demonstrate that the optimization algorithm was effective for
decoding not only population spike trains, but also population
calcium signals with signal and noise correlations.

5. Conclusions

We have demonstrated that when decoding population spike
trains and calcium signals using distance metrics, optimization
of the influence of each cell on the overall result can provide an
increase in performance relative to simple weighting schemes. Our
results demonstrate that for populations of cells in the auditory and
visual systems with a variety of signal and noise correlations, the
benefit of genetic optimization can be relatively large (up to 10%).

Our results demonstrate that the optimal weights for popula-
tion decoding cannot be derived simply from the performance of
each cell as an individual, suggesting that there may be a relation-
ship between the optimal weights for decoder performance and
the correlations between cells in the population. One interesting
avenue for further research would be to characterize this relation-
ship, i.e. to explicitly describe the impact of correlations on the
optimal weighting scheme when decoding population responses.
This relationship also suggests the potential of optimization as a
tool for measuring the contribution of individual cells to the pop-
ulation code. For example, as the stimulus and/or correlations in
the population change, the corresponding changes in the optimal

weights for different cells or groups of cells could be used to assay
the change in the distribution of information across the population.
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