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Hearing was once at the forefront of technological innovation. 
The cochlear implant, which restores hearing through direct 
electrical stimulation of the auditory nerve, was a revolu-

tionary advance and remains the most successful neural prosthetic 
in terms of both performance and penetration1,2. Even hearing aids, 
now considered staid, once led the way in the miniaturization of 
digital electronics3. But innovation has stalled, and hearing health-
care is struggling to meet a growing global burden; the vast majority 
of those with hearing loss do not receive treatment, and those who 
do often receive only limited benefit.

Recent advances in artificial intelligence (AI) have the potential 
to transform hearing. Machines have already achieved human-like 
performance in important hearing-related tasks such as automatic 
speech recognition (ASR)4,5 and natural language processing6,7. AI 
is also starting to have an impact in medicine; for example, eye 
screening technologies based on deep neural networks (DNNs) are 
already in worldwide use. But there are few applications related to 
hearing per se, and AI remains absent from hearing healthcare. In 
this Perspective, we describe opportunities to use existing technolo-
gies to create clinical applications with widespread impact, as well as 
the potential for new technologies that faithfully model the auditory 
system to enable fundamental advances in hearing research.

The disconnect between AI and hearing has deep roots. In 
contrast to modern machine vision, which began with the explicit 
goal of mimicking the visual cortex8 and continues to draw inspi-
ration from the visual system9, work in modern machine hear-
ing has never prioritized biological links. The earliest attempts at 
ASR were, in fact, modelled on human speech processing, but this 
approach was largely unsuccessful. The first viable ASR systems 
arose only after the field made a deliberate turn away from biol-
ogy (with rationale neatly summarized by IBM’s Frederick Jelinek: 
“Airplanes don’t flap their wings”10) to focus on modelling the sta-
tistical structure of the temporal sequences in speech and language 
via hidden Markov models.

The recent incorporation of DNNs into machine hearing sys-
tems has further improved their performance in specific tasks, but 
it has not brought machine hearing any closer to the auditory sys-
tem in a mechanistic sense. Biological replication is not necessarily 
a requirement: many of the important clinical challenges in hearing 
can be addressed using models with no relation to the auditory sys-
tem11 (for example, DNNs for image classification) or models that 
mimic only certain aspects of its function12,13 (such as DNNs for 
sound source separation). But for the full potential of AI in hearing 
to be realized, new machine hearing systems that match both the 
function of the auditory system and key elements of its structure 
are needed.

We envision a future in which the natural links between machine 
hearing and biological hearing are leveraged to provide effective 
hearing healthcare across the world and enable progress in hearing’s 
most complex research challenges. To motivate this future, we first 
provide a brief overview of the auditory system and its disorders 
and describe the potential of AI to address urgent and important 
needs in hearing healthcare. We then outline the steps that must be 
taken to bridge the present disconnect between AI and hearing and 
suggest directions for future work to unite the two fields in working 
towards the development of true artificial auditory systems.

The auditory system and its disorders
The auditory system is a marvel of signal processing. Its combina-
tion of microsecond temporal precision, sensitivity over more than 
five orders of sound magnitude and flexibility to support tasks rang-
ing from sound localization to music appreciation is still without 
parallel in other natural or artificial systems. This remarkable per-
formance is achieved through a complex interplay of biomechani-
cal, chemical and neural components that implement operations 
such as signal conditioning, filtering, feature extraction and clas-
sification in interconnected stages across the ear and brain to create 
the experience of auditory perception (Fig. 1a).
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The complexity of the auditory system is reflected in its disor-
ders. The system is susceptible to disruption at any of its stages, 
resulting in a variety of perceptual impairments such as deafness  

(a loss of sensitivity to sounds), hyperacusis (an increase in sensitiv-
ity that causes sounds to become uncomfortable or painful) or tin-
nitus (the constant perception of a phantom sound, often a ringing 
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Fig. 1 | The auditory system and its disorders. a, The major processing stages of the auditory system. Sound that enters the ear canal causes vibrations 
of the ear drum. These vibrations are transmitted by the ossicle bones in the middle ear to the fluid-filled cochlea in the inner ear. Hair cells in the inner 
ear amplify and transduce motion of the cochlear fluid into electrical signals that are sent to the brain. These signals are processed by several specialized 
pathways in the brainstem, and the resulting information is integrated in the cortex to produce a coherent auditory experience. Some of the key functions 
performed at each processing stage are indicated. b, Examples of objective measures used in hearing assessment. Each box describes one measure and 
provides a schematic illustration of the associated results from a patient with (dark blue) and without (light blue) a hearing condition. Key differences are 
indicated by the arrows. c, Examples of subjective measures used in hearing assessment. d, Example of imaging used in hearing assessment. Image in a 
adapted with permission from ref. 96, CMAJ.
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or whistling). To help identify the underlying causes of a perceptual 
impairment, hearing assessments are designed to provide clinicians 
with a wide range of data reflecting the status of the different pro-
cessing stages, including: mechanical and acoustic measurements of 
the ear; electrophysiological and imaging measurements of the ear 
and brain; and psychoacoustic and cognitive measurements of per-
ception (Fig. 1b–d).

Despite this wealth of data, the diagnosis and treatment of hear-
ing disorders are often problematic. The primary difficulties arise 
from the multifactorial nature of the disorders and the limited 
understanding of their mechanistic underpinnings. A particu-
lar perceptual impairment can be associated with many different 
pathologies, and a particular pathology can be associated with many 
different perceptual impairments. AI can help to disentangle the 
links between pathologies and perceptual impairments to improve 
diagnosis and treatment, as well as to advance the understanding of 
the fundamentals of hearing and provide insight into the causes of 
complex disorders.

In Table 1, we provide an overview of opportunities for AI to 
address a range of challenges in hearing and specify the scale of the 
problem underlying each challenge, the nature of the technology 
needed to solve the problem and the current state of the art. We 
address each of these challenges in detail in the sections below.

Applying existing technologies to meet pressing needs in 
hearing healthcare
The need for improved hearing healthcare is urgent: hearing dis-
orders are a leading cause of disability, affecting approximately 500 
million people worldwide and costing nearly US$750 billion annu-
ally14. The current care model, which is heavily reliant on special-
ized equipment and labour-intensive clinician services, is failing 
to cope: approximately 80% of those who need treatment are not 
receiving it14. Fortunately, many of the most pressing problems in 
hearing healthcare can be framed as classification or regression 
problems that can be solved by training existing AI technologies on 
the appropriate clinical datasets. In this section, we give examples 
of how AI could make an impact in two areas of hearing healthcare: 
clinical inference and automated service.

Clinical inference. The use of information about a patient and 
their symptoms to identify a condition, predict its course and 
determine the optimal treatment is fundamental to all health-
care. Existing technologies such as convolutional neural net-
works (CNNs) are well suited to such problems and have already 
achieved excellent performance in many diagnostic tasks. The 
application of these technologies to hearing could bring immediate 
improvements in the diagnosis and treatment of some of the most  
common conditions.

One example is middle ear infection (otitis media), which is the 
most frequent reason for children to visit the doctor, take antibiotics 
and have surgery15. Despite its prevalence, the diagnosis of different 
middle ear conditions by clinicians remains problematic: accuracy 
has been estimated at 50% for non-specialists and 75% for special-
ists16. Worse still, the great majority (>80%) of those with middle 
ear conditions live in low- and middle-income countries (LMICs) 
with little or no access to care at all. Thus, the application of AI 
to the diagnosis of middle ear conditions could bring dramatic 
improvements in both efficacy and accessibility.

Proof of this concept has already been established. For example, 
one recent effort used transfer learning to train publicly available 
CNNs (for example, Inception-V3) on a database of ear drum 
images (Fig. 1d) to identify six different middle ear conditions with 
90% accuracy17. Commercial products based on similar technology 
have recently become available18. If such products can be used reli-
ably during routine health checks without the need for specialist 
resources, their impact will be profound.

Beyond diagnosis, there is also uncertainty regarding the appro-
priate course of treatment for many conditions that AI could help to 
resolve. For example, if there is a persistent build-up of fluid in the 
middle ear, grommets (tubes) can be inserted into the ear drum to 
ventilate the middle ear, allowing the fluid to drain out and improv-
ing hearing. But performing this procedure in children is resource 
intensive and carries risk. As many cases resolve spontaneously, sur-
gery is not usually performed until after several months of ‘watchful 
waiting’ to identify persistent cases. The development of applica-
tions capable of considering ear drum images together with other 
information about patient history, genetics and so on to predict 
time to resolution could help to avoid either unnecessary waiting or 
unnecessary surgery.

Assembling the comprehensive datasets required to make the 
best use of AI for clinical inference in hearing healthcare will be 
a challenge. In high-income countries where care is available, 
patients are often served by specialists across multiple sectors, with 
each holding vital pieces of information. Efforts are underway to 
join existing hearing datasets19 and create new disease or treatment 
registries for analysis20. But technologies developed on the basis of 
data from high-income countries may not be appropriate for use 
in LMICs with different populations, so it is critical to ensure that 
resources are allocated to building datasets that faithfully reflect the 
global burden of hearing loss14.

Automated service. At present, nearly all hearing healthcare ser-
vices—from initial screening and consultation through to follow-up 
and rehabilitation—are provided in person by highly trained staff 
using specialized equipment. This ‘high-touch’ model restricts care 
to places where the required resources are readily available, thus 
excluding many LMICs, as well as remote locations in high-income 
countries21. COVID-19 has exacerbated the problem: even in places 
with the required resources, vulnerable patients may be unwilling 
or unable to seek in-person care and staff may be unable to pro-
vide it safely22. Fortunately, many of the most common services in 
hearing healthcare can be readily automated or controlled remotely 
through telemedicine.

One such service is the measurement of an audiogram, the stan-
dard clinical test for hearing loss. An audiogram is obtained by pre-
senting tones at different frequencies and intensities to determine 
a listener’s sensitivity threshold for each frequency. The automa-
tion of this process in standard clinical conditions (that is, with 
medical-grade earphones in a sound-proof chamber) is straightfor-
ward, and recent studies demonstrated that approaches based on 
active learning and Gaussian process regression can provide more 
comprehensive measurements in less time than the standard man-
ual approach23,24.

The challenge in designing automated audiogram measurement 
applications is that neither the specifics of the equipment nor the 
environment can be guaranteed in a non-clinical setting25. AI can 
potentially help by framing the problem as audiogram inference 
rather than audiogram measurement. Given a sufficient training 
dataset of paired audiograms measured under ideal and non-ideal 
conditions (perhaps supplemented by data augmentation), along 
with calibration routines to determine background noise levels, ear-
phone properties and so on, it should be possible to infer the true 
audiogram from non-ideal measurements.

Another example of a basic service that could be readily auto-
mated is the fitting or mapping of a cochlear implant, a procedure 
in which a clinician establishes the dynamic range of electrical 
stimulation by adjusting the current emitted while asking the lis-
tener to report the magnitude of their sensation. This procedure is 
performed when the implant is first activated, as well as periodi-
cally thereafter to compensate for ongoing changes in the device, the 
stimulation interface and the brain. Proof-of-concept studies have 
established that an automated fitting using Bayesian networks can 
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achieve results that are comparable to a standard fitting26 and that 
the process can be done by the patient themselves without the need 
for a clinician27.

Mimicking auditory function to improve the performance 
of hearing devices
There are not yet any biological treatments for most forms of hearing 
loss, so treatments are generally limited to the provision of assistive 
devices (Fig. 2). For profound deafness, the only available option is 
to provide direct electrical stimulation of the auditory nerve through 
a cochlear implant. For mild or moderate loss of hearing, a hearing 
aid may be able to help the ear process sound by providing suitable 
amplification. The signal processing in hearing devices improved 
rapidly at first, but in recent years, progress has stagnated28–30. This 
is not due to lack of effort: the number of research papers and pat-
ents related to hearing devices continues to grow exponentially30,31. 
The real problem is the complexity of the challenges involved in 
improving real-world device performance and the inability of tra-
ditional engineering approaches to meet them.

Commercial devices are already using AI in a limited capacity. 
For example, some devices can automatically adjust their settings 
according to the user’s current environment (for example, indoors 

or outdoors) using either pre-trained DNNs (Oticon More)32 or 
active learning with Gaussian processes to track each individual 
user’s preferences over time (WIDEX MOMENT)33. Work to allow 
future devices to combine the capacity of DNNs with adaptive 
personalization by collecting continuous data from each user (for 
example, through ASR or sensor-based measures of listening effort) 
is ongoing.

But the most promising use of AI in hearing devices is in repli-
cating or enhancing functions that are normally performed by the 
auditory system34. By using DNNs to transform incoming sounds, 
AI could dramatically improve the signal processing in hearing 
devices. This approach is particularly well suited to address the 
most common problem reported by device users: difficulty under-
standing speech in a setting with multiple talkers or substantial 
background noise (the so-called cocktail party problem). Recent 
work has already demonstrated that DNNs can improve the under-
standing of speech in noise for device users. This ‘deep denoising’ 
has progressed rapidly from separating the voice of a known talker 
from steady-state noise to separating multiple unknown talkers in 
reverberant environments35.

With denoising DNNs, hearing devices can parse complex acous-
tic environments just as the brain normally would, using source sep-

Table 1 | Top challenges for artificial intelligence in hearing

challenge Summary Scale (millions 
of people in 
need)

Auditory Technology 
readiness level

Next steps refer to

Treatment of middle 
ear conditions

Identification of condition from 
ear drum images; prediction of 
disease/treatment course from 
disparate data

>100 No 3–4b (ref. 17) Build products; 
collect big data

Fig. 1

Automated 
audiogram 
measurement

Inference of hearing thresholds 
from subjective measures

>100 No 3 (refs. 23,24) (AI-led) Build products; 
increase robustness

Fig. 1

9 (ref. 25) (self-led)

Automated fitting of 
hearing devices

Inference of optimal device 
settings from objective and 
subjective measures

10–100 No 3–4b (refs. 27,92) Build products; gain 
users

Fig. 2

Speech denoising for 
hearing devices

Amplification of sound of interest 
and suppression of background 
noise

10–100 Function only 3–4b (refs. 38,39) Build products; 
increase flexibility

Fig. 2

Cognitive control for 
hearing devices

Inference of sound of interest from 
measurements of brain activity

1–10a Function only 3–4 (ref. 42) Build practical 
systems

Fig. 2

Multi-modal 
integration (AR) for 
devices

Fusion of information from 
different modalities to enhance 
perception

1–10a Function only 2–3 (ref. 45) Build practical 
systems

Fig. 2

Treatment of 
profound deafness

Identification of condition from 
disparate data; prediction of 
disease/treatment course from 
disparate data

1–10 No 2–3 (ref. 93) More research; 
collect big data

Box 1

Automated 
translation of signed 
language

Inference of intended meaning 
from motion and image data

1–10 Function only 2–3b (ref. 94) Build practical 
systems

Box 1

Treatment of tinnitus Identification of reliable biomarkers 
or other objective measures; 
understanding of fundamental 
problem

10–100 No; structure 
and function

1–2 (refs. 52,53) More research; 
collect big data

Artificial auditory 
systems

Development of models that match 
both the structure and function of 
the auditory system

Unknown Structure and 
function

8–9 (ref. 95) (ear) More research

1–2 (brain)

Each row provides summary information about a particular challenge, including its scale (the number of people in need), whether or not the technology must replicate aspects of the auditory system, the 
current technology readiness level of potential AI-based solutions and the key next steps to be taken. Technology readiness levels: 1–2, basic concepts formulated; 3–4, proof of concept demonstrated in lab; 
5–7, technology validated in relevant environment; 8–9, product qualified and in use. aAssuming only high-end devices. bCommercial AI-based technologies are available, but efficacy is unknown.
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aration and selective attention to turn speech in noise into speech in 
quiet. Commercial products that include deep denoising are already 
available (Whisper; Krisp)36,37. While the real-world performance 

of these products has not been rigorously tested, laboratory stud-
ies using deep denoising have demonstrated that the performance 
of hearing aid users in recognition tasks can match or even exceed 
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Fig. 2 | Artificial intelligence for the hearing devices of the future. a, The key elements of future hearing devices. Current hearing devices use a 
microphone to pick up sound, which is amplified and filtered before being digitized for signal processing. The processing parameters are fixed after fitting 
by an audiologist and the processed digital signals are converted to either an analogue signal delivered to a speaker in a hearing aid (HA) or an electrical 
signal delivered to electrodes in a cochlear implant (CI) (bottom-right inset). b, Examples of how AI could transform the experience of a deaf person 
throughout their entire life. The boxes indicate the current state of the art (Now, top row) and the potential for improvement (With AI, bottom row) in 
screening and diagnosis, devices and implantation, and fitting and therapy.
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normal levels38. Similar approaches being developed for cochlear 
implants39,40 and hybrid electro-acoustic devices41 have also pro-
duced promising initial results.

Separating different sound sources is a critical first step towards 
helping listeners overcome difficulties understanding speech in 
noise in the real world. But the real challenge is determining which 
sound source to amplify. In some situations, the source that is of 
interest may be obvious, but in others, such as a room full of multiple 
talkers, a source that is of primary interest one minute may become 
a distraction the next. To address this problem, efforts are underway 
to bring hearing devices under ‘cognitive control’ by monitoring the 
brain’s selective attention. When a listener is attending to a particular 
sound source, the fluctuations in their brain’s neural activity track 
the fluctuations in the amplitude of the attended source. Thus, the 
attended source can be inferred from correlations between recorded 
neural activity and possible sources of interest. Initial studies suggest 
that recordings that are sufficient to identify the attended source can 
be obtained from a single electrode within the ear canal, which could 
easily be integrated with a hearing device42–44.

Another promising approach is to move beyond hearing devices 
per se towards a more comprehensive augmented reality system 
that can enhance the brain’s own multi-modal capacities45. Systems 
of integrated wearable and associated devices with a variety of 
multi-modal sensors will eventually become common and have 
the potential to provide powerful platforms to support deaf people  
(Box 1). For example, to enable better speech understanding, AR 
glasses could implement eye tracking to aid inference of the current 
sound source of interest, along with real-time speech-to-text cap-
tioning for instances when auditory perception fails.

Integrating the various technologies for sound or multi-modal 
processing to provide a seamless user experience will be a chal-
lenge46. For sound processing during an in-person conversation, the 
maximum tolerable latency is around 10 ms (ref. 47); any transfor-
mation of the sound, such as denoising, must be performed on this 
timescale. This latency requirement presents a dilemma: the capac-
ity for running complex DNNs in an on-ear device, even for infer-
ence only, is limited, but offloading to a coprocessor on a paired 
device introduces an additional delay. One possible solution is a 
hybrid system in which a sound transformation runs continuously 
with low latency in an on-ear device while a paired device adjusts 
the parameters of the sound transformation on slightly slower tim-
escale36. Other operations, such as personalization or adjustments 
based on changes in the listener’s environment, can be performed on 
a much slower timescale, either on a paired device or in the cloud.

Developing new technologies for machine hearing to 
empower hearing research
There is little doubt that the application of current AI technologies to 
hearing could improve care for many common conditions by mak-
ing basic services more accessible and enabling devices to restore or 
enhance auditory function. But there are also many complex disor-
ders for which current technologies may prove insufficient to over-
come the lack of understanding. One important example is tinnitus, 
which affects 15% of people worldwide and is often debilitating48. 
While the phenomenology of tinnitus is simple, developing effec-
tive treatments for it is difficult because the underlying mechanisms 
remain poorly understood49. For other conditions, such as auditory 
processing disorders (for example, difficulty understanding speech 
in noise despite audiometrically ‘normal’ hearing), providing effec-
tive care is even more difficult, as there is little agreement on diag-
nosis, let alone on treatment50,51.

The difficulties associated with complex hearing disorders stem 
from the fact that they are emergent properties of aberrant network 
states (as opposed to consequences of identifiable molecular or cel-
lular pathologies). Current technologies for regression and classifi-
cation may be able to improve care for these disorders by identifying 

reliable biomarkers or other objective measures within complex 
data to allow more accurate diagnosis and treatment52,53. But a more 
ambitious approach is for AI researchers and hearing researchers 
to work together to create new artificial networks for hearing that 
share key mechanistic features with the auditory system.

If an artificial system is to serve as a surrogate for testing manip-
ulations that cannot be performed on the auditory system itself 
(either at all, or at the required scale), biological replication will help 
to ensure that any conclusions drawn from observations made in 
silico will also hold true in vivo. Artificial auditory systems could 
provide a powerful framework for the generation and testing of new 
hypotheses and could serve as a platform for developing potential 
treatments for network-level disorders54. In the following sections, 
we highlight three critical aspects of hearing that artificial auditory 
systems will need to incorporate: temporal processing, multi-modal 
processing, and plasticity.

Temporal processing. Natural sounds evolve over many differ-
ent timescales, and some, such as speech and music, are defined 
by the complex patterns that they exhibit across timescales. The 
brain tracks and groups the amplitude fluctuations across the dif-
ferent frequencies emitted by individual sound sources to create 
distinct perceptual objects. Disruption of this temporal processing 
is thought to underlie auditory processing disorders55, as well as the 
hearing difficulties that are associated with other complex condi-
tions such as dyslexia56 or schizophrenia57.

Individual neurons in the auditory system exhibit various forms 
of selectivity for different time intervals. In some cases, such as the 
extraction of the microsecond interaural time differences that indi-
cate the location of a sound, there is clear evidence suggesting the 
presence of a dedicated neural circuit58. But the processing of tim-
escales from hundreds of milliseconds to seconds seems to rely on 
a complex interplay between distributed networks in different brain 
areas59. For example, the judgement of sound intervals of several 
seconds seems to rely not only on the auditory system but also on 
the network dynamics in the striatum60. Thus, understanding the 
aspects of hearing that rely on temporal processing requires under-
standing how sensitivity to intervals and patterns emerges in net-
works from the intrinsic properties of neurons and the synapses that 
connect them.

There have recently been several new network architectures 
developed for multi-timescale processing of speech and language, 
such as WaveNet61 and the Transformer62. These networks achieve 
impressive performance in many tasks, but bear little resemblance 
to the auditory system. To be useful as models of hearing per se, 
artificial networks must not only process temporal information as 
effectively as the brain, but also do so through comparable mech-
anisms, such as recurrency. One recent study in which recurrent 
neural networks were trained to perform a variety of tasks that 
relied on the analysis of temporal intervals found that they exhib-
ited a number of phenomena that have been observed in the brain63. 
For example, the representations of temporal and non-temporal 
information occupied orthogonal subspaces of neural activity, as 
has been observed in prefrontal cortex64, and the network followed 
stereotypical dynamical trajectories that were scaled to match the 
timescale of a task, as has been observed in medial frontal cortex65. 
Further work along these lines is needed to go beyond the analysis 
of time intervals to tasks involving the processing of complex tem-
poral patterns that are typical of natural sounds.

Multi-modal processing. To accurately model the auditory system, 
artificial networks must ultimately integrate other sensorimotor 
modalities with the flexibility to perform a wide range of differ-
ent tasks just as the brain does66. The ears are just one of many 
sources that provide information to the brain, and the integration 
of information from different sources is evident even at early stages 
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of processing67. Explicit attempts to model multi-modal properties 
in isolation are unlikely to be useful (beyond providing a compact 
description of the phenomena). But if networks with appropriate 
features are trained on a wide variety of tasks, multi-modal flexibil-
ity will emerge, just as it has in the brain.

In one recent study, recurrent neural networks trained to per-
form 20 different cognitive tasks exhibited clustering and composi-
tionality; that is, they developed distinct groups of units specialized 
for simple computations that seemed to serve as building blocks for 
more complex tasks68. These properties persisted across changes 
in some network hyperparameters but not others: the formation 
of clusters depended strongly on the choice of activation func-
tion and occurred only when all tasks were trained in parallel.  

When tasks were trained sequentially using continual learning tech-
niques (mimicking human learning in adulthood), specialized clus-
ters were replaced by mixed selectivity. These results highlight the 
need to accurately model both the internal properties of a system 
and its developmental environment. For the auditory system, it may 
be appropriate to use parallel training for early stages of process-
ing to model brainstem circuits that evolved to carry out general 
encoding or elementary computations (or, alternatively, unsuper-
vised learning with generative frameworks, as has proved effective 
for pre-training ASR and natural language processing systems69,70). 
For the late stages of processing, sequential training may be more 
appropriate to model cortical networks with the flexibility to per-
form a range of multi-modal tasks.

Box 1 | Artificial intelligence to support multiple modes of societal engagement

Hearing healthcare is focused on treating deafness, but this out-
come is not always feasible or even desirable. Not all people with 
hearing loss view it as a problem to be fixed97. While AI can cer-
tainly transform restorative treatments for deafness, its impact 
could be even larger for those who remain deaf. Much of the dis-
ability associated with deafness arises from the fact that hearing is 
required at present for engagement in society. AI has the potential 
to bring about a new societal model with support for ‘multiple 
normals’, in which alternative modes of engagement are readily 
available98.

Supporting informed decision-making
The benefits that an individual receives from a cochlear 
implant can vary widely. Given that a cochlear implant also has 
downsides—substantial upfront and ongoing costs, risks and 
complications associated with surgery, continued dependence 
on associated support and services, and so on—decisions about 
whether to undergo implantation can be difficult. Accurate 
predictions of benefit would be a great help; unfortunately, such 
predictions are not yet available. Attempts to explain variation in 
cochlear implant outcomes through traditional approaches have 
been largely unsuccessful74. But efforts to apply AI to the problem 
have produced promising initial results.

In one recent study, a support vector machine classifier was used 
to predict improvements in speech perception in children after 
implantation93. The inputs to the classifier were morphological 
measures of neural preservation from MRI images in higher-level 
auditory and cognitive regions. Based on these image data alone, 
the correlation between the classifier prediction and the actual 
benefit observed 6 months after implantation approached 0.5. 
With further development to build predictive models that fuse 
image data with other measures of auditory structure and function 

(Fig. 1) and other patient data, much more accurate predictions 
may be possible.
Supporting hearing-optional communication
It is becoming increasingly easy to imagine a world in which 
deafness is not a disability, as AI is already making many settings 
more inclusive. In higher education, for example, much of the 
content is delivered as structured communication from teacher 
to students through technology platforms on which accessibility 
features are now readily available; standard software, such as 
Microsoft Powerpoint, has the capacity to provide captions in 
multiple languages in real time during ongoing presentations. The 
recent switch to remote learning because of COVID-19, which 
requires all communication between teachers and students to be 
routed through technology platforms, provides an opportunity 
to make accessibility features part of standard leaning models  
by default.

Supporting alternative modes of unstructured social 
communication is more challenging, as many deaf people 
communicate through signed, rather than spoken, language. But 
technologies for real-time automated translation can potentially 
bridge this gap. One recent study demonstrated the potential 
for a glove-like device that tracks finger movements to enable 
translation from American sign language to English94. This 
technology required the coordinated development of hardware 
that is comfortable, durable and flexible, and associated software 
to classify signals from the device using support vector machines. 
Although the overall accuracy of the system in this initial study 
was 98%, the vocabulary was limited to only 11 gestures, so more 
work is needed to enable use of the full complement of gestures, as 
well as integration with facial and other movements.Applications 
based on such technology have the potential to support natural 
communication not only between deaf people and hearing people, 
but also between deaf people from different countries, each of 
which has its own unique signed language.

A brain image indicating areas where pre-implantation morphology was 
predictive of CI benefit, such as the occipital and prefrontal cortices 
(red and green), and areas that were impacted by deafness but were not 
predictive of benefit, such as the primary auditory cortex (blue). Image 
reproduced with permission from ref. 97, PNAS.

A translation device with stretchable sensor arrays on each finger attached 
to a wireless circuit board on the wrist. Image reproduced with permission 
from ref. 98, Springer Nature Limited.
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Plasticity. The auditory system never stops changing. This plasticity 
is what allows the brain to learn new tasks and to match the alloca-
tion of its limited resources to the task at hand. But it is also the 
root of several complex hearing problems. For example, tinnitus, 
often described as a ringing in the ear, is actually a ringing in the 
brain. A prevailing theory is that following a prolonged loss of input 
from the ear, the brain responds with increased central gain that 
amplifies spontaneous neural activity to a level that is perceptible. 
But this simple idea is difficult to reconcile with experimental data. 
While increased spontaneous activity with tinnitus has been widely 
observed at the earliest stages of the auditory system, it does not 
necessarily propagate to later stages49. Furthermore, tinnitus does 
not actually impair auditory perception71. Other network-level the-
ories have been proposed, such as increased central variance72, dis-
rupted multi-modal plasticity73 or dysrhythmia of thalamocortical 
oscillations52, but definitive evidence is lacking. Accurate network 
models of the auditory system that include realistic forms of plastic-
ity might be a way to differentiate among the various hypotheses.

Such models could also help to improve prognosis, rehabilita-
tion and training following the restoration of hearing. With cochlear 
implants, for example, there is a large variation in benefit across 
patients that is difficult to explain74. One hypothesis is that the ben-
efit provided by a cochlear implant ultimately depends on the degree 
to which plasticity allows the brain to adapt to the new information 
that it is receiving from the ear. Many different forms of training to 
encourage this plasticity have been explored but none has proved 
widely effective75. Artificial networks that accurately model auditory 
plasticity after hearing restoration would allow a systematic explo-
ration of different training strategies to determine the conditions 
under which each is optimal. Given the limited number and hetero-
geneity of people receiving cochlear implants, it is unlikely that such 
optimization could ever be achieved through studies of human users. 
Of course, there is no guarantee that training strategies that are opti-
mal for the artificial system will prove useful for human users. But 
the likelihood of successful translation will be increased if the key 
features of the artificial and biological systems are closely matched.

Towards artificial auditory systems
Faithful replication of the auditory system will require the design 
of new networks that are well matched to the structure of the sys-
tem and the perceptions that it creates. Attempts to model hearing 
using CNNs have had some success76,77. One recent study trained an 
encoder–decoder network to reproduce complex cochlear mechan-
ics with high accuracy78. Such demonstrations that artificial net-
works can capture the required input–output transformations are a 
critical first step towards developing artificial auditory systems. But 
on a mechanistic level, the architecture of CNNs is a poor match 
for the auditory system79. The tiling of space by neurons with simi-
lar receptive fields in the visual system that inspired CNNs has no 
analogue in the ear or central auditory system, nor does the trans-
lational invariance achieved in CNNs through weight sharing and 
subsequent pooling. Auditory objects are not translationally invari-
ant with respect to their primary representational dimension, fre-
quency; in fact, a translation in frequency can be a key distinction 
between, for example, different speech phonemes.

It may be possible to make CNNs more like the auditory system 
by introducing new features. One example is the introduction of 
heterogeneous pooling (that is, pooling across different subsets of 
convolutional units) to provide some invariance to small changes in 
frequency (such as those related to voice pitch) while maintaining 
sensitivity to the large frequency shifts that distinguish phonemes80. 
But, ultimately, new architectures will be required. The inclusion of 
recurrent features is likely to be critical, as feedback connections are 
present at all levels of the auditory system and contribute to tem-
poral and multi-modal processing and plasticity81. Including such 
features in networks may also improve their efficiency as well as 

their fidelity as models of the brain; although many recurrent net-
works have feedforward equivalents, the recurrent version typically 
has fewer parameters9.

An example of the power of new designs is the inclusion of recur-
rent features in capsule networks for vision82, which were inspired 
by the columnar nature of cortical microcircuitry. These features 
allow the network to capture local invariances (to, for example, 
skew or rotation) that are not easily captured by traditional CNNs, 
and to reproduce aspects of visual perception that CNNs cannot, 
such as those related to crowding (the masking of an object by its 
neighbours)83. Networks with similar features may also be use-
ful for hearing; visual crowding is analogous to auditory informa-
tional masking84, and the transformations between ‘place coding’ 
and ‘rate coding’ in capsule networks are a hallmark of auditory 
processing82. New versions of these networks with the flexibility to 
share computations across different representations could provide a 
starting point for developing models with the multi-timescale and 
multi-modal capabilities of the auditory system85.

Outlook
The current model of hearing healthcare improves the lives of mil-
lions of people every year. But it is far from optimal: children with 
middle ear conditions are triaged to watchful waiting while their 
development is disrupted; people with tinnitus are subject to treat-
ment by trial and error, often with little or no benefit; and the deaf 
are provided with devices that do not allow them to understand 
speech in noise or enjoy music. And those are the lucky ones: most 
people with hearing conditions live in LMICs with little or no access 
to treatment or support of any kind.

Despite the potential for AI to produce dramatic improvements, 
it has yet to make a substantial impact. We have described oppor-
tunities for AI to reshape hearing healthcare with the potential for 
immediate benefit on the diagnosis and treatment of many common 
conditions. For this potential to be realized, coordinated effort is 
required, with AI developers working to turn current technologies 
into robust applications, and hearing scientists and clinicians ensur-
ing both the availability of appropriate data for training and respon-
sive clinical infrastructure to support rapid adoption.

Transforming hearing healthcare will not be easy. First, there are 
important ethical considerations regarding appropriate use of tech-
nologies, data privacy and liability that have not yet been resolved11. 
Second, the inertia associated with the current service model is 
strong. The market for devices is highly concentrated, and excessive 
regulation and restricted distribution have protected incumbents 
and stifled innovation86,87. These problems have recently been rec-
ognized, and action is being taken to reduce barriers and promote 
market disruption88. But further efforts will be required to incentiv-
ize device manufacturers and service providers to enter underdevel-
oped markets in LMICs where the need is most urgent.

We have also outlined ways in which AI could be applied beyond 
healthcare to play a critical part in future hearing research. Artificial 
networks that provide accurate models of auditory processing, with 
parallel computations across multiple timescales, integration of 
inputs from multiple modalities and plasticity to adapt to internal 
and external changes, have the potential to revolutionize the study 
of hearing. But to realize this potential, AI researchers and hearing 
researchers must work together to coordinate experiments on arti-
ficial networks and the auditory system with the goal of identifying 
the aspects of structure and function that are most important.

Ongoing collaboration between AI researchers and hearing 
researchers would create a win–win situation for both communities 
and also help to ensure that new technologies are well matched to 
the needs of users89,90. The computational strategies implemented by 
the ear and brain evolved over many millennia under strong pres-
sure to be highly effective and efficient. Thus, new AI tools modelled 
after the auditory system have the potential to be transformative not 
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only for hearing but also for other domains in which efficient and 
adaptive multi-scale, multi-modality and multi-task capabilities are 
critical. This is not the first call for the AI and hearing communities 
to come together91, but, given the immense opportunities created by 
recent developments, we are hopeful that it will be the last.
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