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Hearing loss is one of the most widespread and disabling 
chronic conditions in the world today. Approximately 
500 million people are affected worldwide, making hear-

ing loss the fourth leading cause of years lived with disability1 and 
imposing a substantial economic burden with estimated costs of 
greater than US$750 billion globally each year2. Hearing loss has 
also been linked to declines in mental health; in fact, a recent com-
mission identified hearing loss as the leading modifiable risk fac-
tor for incident dementia3. As the societal impact of hearing loss 
continues to grow, the need for improved treatments is becoming 
increasingly urgent.

Hearing aids are the current treatment of choice for the most 
common forms of hearing loss that result from noise exposure and 
aging. However, only a small fraction of people with hearing loss 
(15–20%) use hearing aids4,5. There are a number of reasons for this 
poor uptake, but one of the most important is the lack of benefit 
offered by hearing aids in listening environments that are typical 
of real-world social settings. The primary problem associated with 
hearing impairment is the loss of audibility—that is, the loss of the 
ability to detect low-intensity sounds6,7. As a result of cochlear dam-
age, sensitivity thresholds are increased and low-intensity sounds 
can no longer be perceived. Fortunately, hearing aids generally 
have the ability to correct this problem by providing amplification. 
However, perception often remains impaired even after audibility is 
restored. It is well established that hearing aids improve the percep-
tion of low-intensity sounds in quiet environments but often fail to 
provide a benefit for high-intensity sounds in background noise8,9.

The reasons for this residual impairment remain unclear, but 
one possibility is the existence of additional deficits beyond loss of 
audibility that impair the processing of high-intensity sounds. Many 
such deficits have been reported, such as broadened frequency tun-
ing10 and impaired temporal processing11,12, but these deficits are 
typically observed when comparisons between normal and impaired 
hearing are made at different sound intensities to control for differ-
ences in audibility. This approach confounds the effects of hearing 
loss with the effects of intensity; amplification to high intensities 
impairs auditory processing even with normal hearing13–15. In fact, 

when the hearing performance of listeners with mild-to-moderate 
hearing loss (typical of the vast majority of impairments) and listen-
ers with normal hearing is compared at the same high intensities, 
the performance of the two groups is often similar in both simple 
tasks such as tone-in-noise detection16 and complex tasks such as 
speech-in-noise perception14,17–20.

Another possibility is that the residual problems that persist after 
restoration of audibility are caused by the processing in the hear-
ing aid itself. Most modern hearing aids share the same core pro-
cessing algorithm, which is known as multi-channel wide dynamic 
range compression (WDRC). This algorithm provides listeners with 
frequency-specific amplification based on measured changes in 
their sensitivity thresholds. It also provides compression by vary-
ing the amplification of each frequency over time on the basis of 
the incoming sound intensity such that amplification decreases as 
the incoming sound intensity increases. This algorithm is designed 
to mimic the amplification and compression that normally take 
place within a healthy cochlea but are compromised by hearing loss. 
However, it ignores many other aspects of auditory processing that 
are also impacted by hearing loss21 and modifies the spectral and 
temporal properties of incoming sounds in ways that may actually 
be detrimental to perception22,23.

Identifying the factors that are responsible for the failure of hear-
ing aids to restore normal auditory perception through psychophys-
ical studies has proven to be difficult. We approached the problem 
from the perspective of the neural code—the activity patterns in 
central auditory brain areas that provide the link between sound 
and perception. Hearing loss impairs perception because it causes 
distortions in the information carried by the neural code about 
incoming sounds. The failure of current hearing aids to restore nor-
mal perception suggests that there are critical features of the neural 
code that remain distorted. An ideal hearing aid would correct these 
distortions by transforming incoming sounds such that processing 
of the transformed sounds by the impaired system would result in 
the same neural activity patterns as the processing of the original 
sounds by the healthy system; current hearing aids fail to achieve 
this ideal.

Compression and amplification algorithms in 
hearing aids impair the selectivity of neural 
responses to speech
Alex G. Armstrong1,2, Chi Chung Lam1,2, Shievanie Sabesan1,2 and Nicholas A. Lesica   1 ✉

In quiet environments, hearing aids improve the perception of low-intensity sounds. However, for high-intensity sounds in 
background noise, the aids often fail to provide a benefit to the wearer. Here, using large-scale single-neuron recordings from 
hearing-impaired gerbils—an established animal model of human hearing—we show that hearing aids restore the sensitivity of 
neural responses to speech, but not their selectivity. Rather than reflecting a deficit in supra-threshold auditory processing, the 
low selectivity is a consequence of hearing-aid compression (which decreases the spectral and temporal contrasts of incoming 
sound) and amplification (which distorts neural responses, regardless of whether hearing is impaired). Processing strategies 
that avoid the trade-off between neural sensitivity and selectivity should improve the performance of hearing aids.
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Little is known about the specific distortions in the neural code 
that are caused by hearing loss or the degree to which current hear-
ing aids correct them. The effects of hearing loss on the neural code 
for complex sounds such as speech have been well characterized 
at the level of the auditory nerve24, but its impact on downstream 
central brain areas remains unclear as there have been few studies 
of single-neuron responses with hearing loss and even fewer with 
hearing aids. Auditory processing in humans involves many brain 
areas from the brainstem, which performs general feature extrac-
tion and integration, to the cortex, which performs context-specific 
and language-specific processing. Although large-scale studies of 
single neurons in these areas in humans are not yet possible, animal 
models can be used as a valuable surrogate, particularly for the early 
stages of processing, which are largely conserved across mammals 
and seem to be the primary source of human perceptual deficits7. 
Previous research has already shown that classifiers that are trained 
to identify speech phonemes on the basis of neural activity pat-
terns recorded from animals perform similarly to human listeners 
performing an analogous task25. Thus, comparisons of the neural 
code with and without hearing loss and a hearing aid in an ani-
mal model can provide valuable insights into which distortions in  
the neural code underlie the failure of hearing aids to restore  
normal perception.

The neural code is transformed through successive stages of pro-
cessing from the auditory nerve to the auditory cortex. At the level 
of the auditory nerve, some of the important effects of hearing loss 
that underlie impaired perception are not yet manifest26, whereas, 
at the level of the thalamus and cortex, neural activity is modulated 
by contextual and behavioural factors (for example, attention) that 
complicate the study of the general effects of hearing loss on the 
neural representation of acoustic features. We chose to study the 
neural code in the inferior colliculus (IC)—the midbrain hub of the 
central auditory pathway that serves as an obligatory relay between 
the early brainstem and the thalamus. The neural activity in the IC 
reflects the integrated effects of processing in several peripheral 
pathways but is still primarily determined by the acoustic features 
of incoming sounds.

We focused our study on mild-to-moderate sensorineural hear-
ing loss, which reflects relatively modest cochlear damage27. As 
peripheral processing is still highly functional in individuals with 
this form of hearing loss, hearing aids have the potential to provide 
a substantial benefit. We found that most of the distortions in the 
neural code in the IC that are caused by hearing loss are in fact cor-
rected by a hearing aid, but a loss of selectivity in neural responses 
that is specific to complex sounds remains. Our analysis suggests 
that the low selectivity of aided responses does not reflect a deficit in 
supra-threshold auditory processing, but is instead a consequence 
of the strategies used by current hearing aids to restore audibil-
ity. Our findings support the wide provision of simple devices to 
address the growing global burden of hearing loss in the short term 
and provide guidance for the development of improved hearing aids 
in the future.

Results
To study the neural code with high spatial and temporal resolu-
tion across large populations of neurons, we made recordings using 
custom-designed electrodes with a total of 512 channels spanning 
both brain hemispheres in gerbils, a commonly used animal model 
for studies of low-frequency hearing (Fig. 1a and Supplementary 
Fig. 1). We used these large-scale recordings to study the activity 
patterns of more than 5,000 neurons in the IC. To induce slop-
ing mild-to-moderate sensorineural hearing loss, we exposed 
young-adult gerbils to broadband noise (118 dB sound pressure 
level (SPL) for 3 h). Compared with normal-hearing gerbils, the 
resulting pure-tone threshold shifts measured one month after 
exposure using auditory brainstem response (ABR) recordings  

typically ranged from 20–30 dB at low frequencies to 40–50 dB at 
high frequencies (Fig. 1b). Pure-tone threshold shifts with hearing 
loss were also evident in frequency response areas (FRAs) measured 
from multi-unit activity (MUA) recorded in the IC, illustrating the 
degree to which populations of neurons were responsive to tones 
with different frequencies and intensities (Fig. 1c).

For gerbils with hearing loss, we presented sounds both before 
and after processing with a multi-channel WDRC hearing aid. 
The amplification and compression parameters for the hearing 
aid were custom fit to each ear of each gerbil on the basis of the 
measured ABR threshold shifts. The hearing aid amplified sounds 
in a frequency-dependent manner, with amplification for sounds 
at a moderate intensity typically increasing from approximately 
10 dB at low frequencies to approximately 20 dB at high frequencies  
(Fig. 1b). This amplification was sufficient to restore the pure-tone 
IC MUA thresholds with hearing loss to normal (Fig. 1c).

To begin our study of the neural code, we first presented speech 
to normal-hearing gerbils at moderate intensity (62 dB SPL, which 
is typical of a conversation in a quiet environment). We used a set of 
nonsense consonant–vowel syllables, as is common in human stud-
ies that focus on acoustic cues for speech perception rather than 
linguistic or cognitive factors. The set of syllables consisted of all 
possible combinations of 12 consonants and 4 vowels, each spoken 
by 8 different talkers. For individual neurons, individual instances 
of different syllables elicited complex response patterns (Fig. 2a). 
For a population of neurons, the response patterns can be thought 
of as trajectories in high-dimensional space in which each dimen-
sion corresponds to the activity of one neuron and each point on a 
trajectory indicates the activity of each neuron in the population at 
one point in time. To visualize these patterns, we performed dimen-
sionality reduction using principal component analysis, which iden-
tified linear combinations of all of the neurons that best represented 
the full population. Within the space defined by the first three prin-
cipal components, the responses to individual instances of differ-
ent syllables followed distinct trajectories that were reliable across 
repeated trials (Fig. 2b, left).

To assess the degree to which the neural code enabled the accu-
rate identification of consonants, we used a classifier to identify the 
consonant in each syllable on the basis of the population response 
patterns. Despite the variability in the responses to each conso-
nant across syllables with different vowels and talkers, the average 
responses to different consonants were still distinct (Fig. 2b, right). 
We trained a support vector machine to classify the first 150 ms of 
single-trial responses represented as spike counts with 5 ms time 
bins. We formed populations of 150 neurons by sampling at random, 
without replacement, from neurons from all normal-hearing gerbils 
until not enough neurons remained to form another population. 
The classifier identified consonants with high accuracy (Fig. 2c) and 
error patterns that reflected confusions within consonant classes  
as expected from human perceptual studies28,29. Accuracy was  
high for the sibilant fricatives (‘ʃ’, ‘ʒ’, ‘s’, ‘z’), moderate for the stops 
(‘t’, ‘k’, ‘b’, ‘d’), and low for the nasals (‘n’, ‘m’) and the non-sibilant 
fricatives (‘v’, ‘ð’).

We presented the same set of syllables to gerbils with hearing loss 
before and after processing with the hearing aid. The mean spike 
rate of individual neurons was decreased by hearing loss but was 
restored to normal by the hearing aid (Fig. 3a,b; full details of all 
statistical tests, including sample sizes and P values, are provided 
in Supplementary Table 1). A classifier trained to detect speech in 
silence on the basis of the neural response patterns of individual 
neurons confirmed that the hearing aid restored audibility to nor-
mal (Fig. 3b, right). Consonant identification was also impacted 
by hearing loss but, in contrast to audibility, remained well below 
normal even with the hearing aid (Fig. 3c). The hearing aid failed 
to restore consonant identification not only for speech in quiet 
conditions, but also for speech presented in the presence of either 
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a second independent talker or multi-talker noise. This failure was 
evident across a range of different classifiers, neural representations 
and population sizes (Supplementary Figs. 2 and 3), and therefore 
reflects a general deficit in the neural code.

Hearing aids fail to restore the selectivity of responses to speech. 
To understand why the hearing aid failed to restore consonant iden-
tification to normal, we investigated how different features of the 
neural response patterns varied across hearing conditions. Accurate 
auditory perception requires that the response patterns elicited by 
different sounds are distinct and reliable. For consonant identifica-
tion, the response to a particular instance of a consonant must be 
similar to responses to other instances of that consonant but differ-
ent from responses to other consonants.

In the context of any perceptual task, a neural response pattern 
can be separated into signal and noise—that is, the components of 

the response that are helpful for the task and the components of the 
response that are not (Fig. 4a). For consonant identification, the sig-
nal can be further divided into a common signal, which is common 
to all consonants, and a differential signal, which is specific to each 
consonant. The common signal reflects the average detectability 
(that is, audibility) of all consonants, whereas the differential signal 
determines how well different consonants can be discriminated.

The noise can also be further divided on the basis of the dif-
ferent sources of variability in neural response patterns. The first 
source of variability is nuisance noise, which arises because conso-
nants are followed by different vowels or spoken by different talkers 
(note that, although this component of the response serves as noise 
for this task, it could also serve as a signal for a different task, such 
as talker identification). The second source of variability is internal 
noise, which reflects the fundamental limitations of neural coding 
due to the stochastic nature of spiking and other intrinsic factors. 
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Fig. 1 | Large-scale recordings of neural activity from the IC with normal hearing and mild-to-moderate hearing loss. a, Schematic of the geometry 
of custom-designed electrode arrays for large-scale recordings in relation to the IC in gerbils. b, Threshold shifts with hearing loss and corresponding 
hearing aid amplification. Top, hearing loss as a function of frequency in noise-exposed gerbils. Data are mean ± s.e. n = 20. The values shown are the ABR 
threshold shift relative to the mean of all gerbils (n = 15) with normal hearing. Bottom, hearing aid amplification as a function of frequency for speech at 
62 dB SPL with gain and compression parameters fit to the average hearing loss after noise exposure. The values shown are the average across 5 min  
of continuous speech. c, MUA recorded in the IC during the presentation of tones. Left, the MUA FRAs for 16 channels from a normal-hearing gerbil.  
Each subplot shows the average activity recorded from a single channel during the presentation of tones with different frequencies and intensities.  
The colour map for each plot was normalized to the minimum and maximum activity level across all frequencies (F) and intensities. Middle,  
MUA FRAs for 16 channels from a gerbil with hearing loss. Right, the average MUA FRAs across all channels from all gerbils for each hearing condition. 
The lines indicate the lowest intensity for each frequency at which the mean MUA was more than 3 s.d. above the mean MUA during silence. The line for 
normal hearing is shown in blue on all three subplots.
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Fig. 2 | Single-trial responses to speech can be classified with high accuracy. a, Single-unit responses to speech. Each column shows the sound waveform 
for one instance of a syllable and the corresponding raster plots for repeated presentations of that syllable for two example neurons from a gerbil with 
normal hearing. b, Left, low-dimensional visualization of population single-trial responses to speech. Each line shows the responses from all neurons from 
all gerbils with normal hearing after principal component decomposition and projection into the space defined by the first three principal components. 
Responses to two repeated presentations for each of three syllables (indicated by the three colours) are shown. The time points corresponding to syllable 
onset are indicated by t = 0 s. Right, low-dimensional visualization of the mean population response to each consonant. Each line shows responses as  
in the left panel after averaging across all presentations of syllables with the same consonant. The mean responses to each of 12 consonants are shown.  
The different colours correspond to the consonant categories: sibilant fricatives (orange), stops (pink), and nasals and non-sibilant fricatives (blue).  
c, Performance and confusion patterns for a support-vector-machine classifier that was trained to identify consonants on the basis of population single-trial 
responses to speech at 62 dB SPL. Left, each row shows the frequency with which responses to one consonant were identified as that consonant (diagonal 
entries) or other consonants (off-diagonal entries) by the classifier. The values on the diagonal entries are the F1 score computed as 2 × (precision × recall)/
(precision + recall), where precision = true positives/(true positives + false positives) and recall = true positives/(true positives + false negatives). The 
values shown are the average across all populations. Right, consonants were assigned angles along a unit circle (indicated by black letters). For each 
single-trial response for a given actual consonant, a vector was formed with a magnitude of 1 and an angle corresponding to the consonant that the 
response was identified as by the classifier. The positions of the coloured letters indicate the sum of these vectors across all responses for each consonant.
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For speech in the presence of additional sounds, there is also exter-
nal noise, which is the variability in responses that is caused by the 
additional sounds themselves.

All of these signal and noise components have the potential to 
influence consonant identification through their impact on the neu-
ral response patterns and, together, they form a complete descrip-
tion of any response. To isolate each of these components in turn, 

we computed the covariance between response patterns with dif-
ferent forms of shuffling across consonants, vowels and talkers. We 
performed this decomposition of the responses in the frequency 
domain by computing spectral densities to gain further insights into 
which features of speech were reflected in each component.

The results are shown for a typical neuron for speech in quiet 
conditions in Fig. 4b. We first isolated the internal noise by  
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comparing the power spectral density (PSD) of responses across a 
single trial of every syllable with the cross spectral density (CSD) 
of responses to repeated trials of the same speech (that is, with 
the order of consonants, vowels and talkers preserved). The PSD 
provides a frequency-resolved measure of the variance in a single 
neural response, whereas the CSD provides a frequency-resolved 
measure of the covariance between two responses. For an ideal 
neuron, repeated trials of identical speech would elicit identical 
responses and the CSD would be equal to the PSD. For a real neu-
ron, the difference between the PSD and the CSD gives a measure of 
the internal noise. For the example neuron, the CSD was less than 
the PSD at all frequencies. The difference between the PSD and 
the CSD increased with increasing frequency up to 80 Hz and then 
remained relatively constant, indicating that the internal noise was 
smallest (and, therefore, the neural responses were most reliable) at 
frequencies corresponding to the envelope of the speech.

We next isolated the nuisance noise by comparing the CSD 
to the CSD of responses to repeated trials after shuffling across 
vowels and talkers (denoted as CSDV,T

shuff). After this shuffling, the 
only remaining covariance between the responses is that which is 
shared across different instances of the same consonants. For the 
example neuron, this covariance was significant only at frequen-
cies corresponding to the speech envelope; at frequencies of higher 
than 40 Hz, the CSDV,T

shuff  dropped below chance (denoted as CSD0). 
Thus, the nuisance noise, given by the difference between the CSD 
and the CSDV,T

shuff , was greatest at the frequencies corresponding to 
pitch (which is expected because pitch is reliably encoded in the 
response patterns, but is not useful for talker-independent conso-
nant identification).

Finally, we isolated the common signal from the differential 
signal by comparing the CSDV,T

shuff  with the CSD of the responses 
after shuffling across talkers, vowels and consonants (denoted as 
CSDC,V,T

shuff ). The only covariance between the responses that remains 
after this shuffling is that which is shared across all syllables. For the 
example neuron, both the differential signal, given by the difference 
between the CSDV,T

shuff  and the CSDC,V,T
shuff , and the common signal, 

given directly by the CSDC,V,T
shuff , were significant across the full range 

of speech envelope frequencies.
At the population level, hearing loss impacted all components 

of the responses, with internal noise, nuisance noise, common sig-
nal and differential signal all decreasing in magnitude (Fig. 4c). The 
hearing aid increased the magnitude of both the internal noise and 
the nuisance noise (corresponding to the light and dark blue areas 
in Fig. 4b, respectively), but both remained at or below normal lev-
els. This suggests that mild-to-moderate hearing loss does not result 
in either fundamental limitations on neural coding or increased 
sensitivity to uninformative features of speech that can account for 
the failure of the hearing aid to restore consonant identification  
to normal.

The hearing aid also restored the common signal (corresponding 
to the dark red area in Fig. 4b) to normal, but failed to increase the 
magnitude of the differential signal (corresponding to the light red 
area in Fig. 4b). Thus, the key difference between normal and aided 
responses seems to be their selectivity—that is, the degree to which 
their average responses to different consonants are distinct. This 
difference was most pronounced in the low-frequency component 
of the responses (Fig. 4d, left). In fact, the same failure of the hearing 
aid to increase the differential signal was evident when looking only 
at spike counts (Fig. 4d, right), suggesting that the hearing aid fails 
to restore even the differences in overall activity across consonants.

The selectivity of aided responses to tones is normal. One pos-
sible explanation for the low selectivity of aided responses to speech 
is broadened frequency tuning, which would decrease sensitivity 
to differences in the spectral content of different consonants and 
increase the degree to which features of speech at one frequency are 
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susceptible to masking by noise at other frequencies. The width of 
cochlear frequency tuning can increase with cochlear damage27 and 
impaired frequency selectivity is often reported in people with hear-
ing loss10. However, the degree to which frequency tuning is broad-
ened with hearing loss depends on both the severity of the hearing 
loss and the intensity of incoming sounds (because frequency tun-
ing broadens with increasing intensity even with normal hearing). 
Forward-masking paradigms that provide psychophysical estimates 
that closely match neural tuning curves30–32 suggest that changes 
in frequency tuning may not be substantial for mild-to-moderate 
hearing loss at moderate sound intensities16.

To characterize frequency tuning, we examined responses to 
pure tones presented at different frequencies and intensities. We 
defined the centre frequency (CF) of each neuron as the frequency 
that elicited a significant response at the lowest intensity and the 
threshold as the minimum intensity that was required to elicit a sig-
nificant response at the CF (Fig. 5a). Hearing loss caused an increase 
in thresholds across the range of speech-relevant frequencies, but 
this threshold shift was corrected by the hearing aid; in fact, aided 
thresholds were lower compared with those for normal hearing for 
CFs at both edges of the speech-relevant range (Fig. 5b).

The mean spike rate of individual neurons in response to pure 
tones presented at the same intensity as the speech (62 dB SPL) was 
decreased by hearing loss, but was restored to normal by the hear-
ing aid (Fig. 5c, left). The width of frequency tuning (defined as 
the range of frequencies for which the mean spike rate was at least 
half of its maximum value) at the same relative intensity (14 dB 
above threshold) for each neuron was increased by hearing loss, as 
expected, but was restored to normal by the hearing aid (Fig. 5c, 
middle left). The width of frequency tuning at a fixed intensity of 
62 dB SPL was decreased by hearing loss (Fig. 5c, middle), which 
was expected given the increased thresholds. The tuning width 
at this intensity was increased with the hearing aid, but remained 
slightly narrower than normal. This suggests that mild-to-moderate 
hearing loss does not result in broadened frequency tuning at mod-
erate intensities even after amplification by the hearing aid.

To determine directly whether the selectivity of responses to 
pure tones was affected by hearing loss, we again isolated the dif-
ferential signal component (that is, the component of the response 
that varies with tone frequency). The magnitude of the differential 
signal was unimpacted by hearing loss and was slightly higher than 
normal with the hearing aid (Fig. 5c, middle right), indicating that 
there was no loss of selectivity. To confirm the normal selectivity 
of aided responses to tones, we trained a classifier to identify tone 
frequencies on the basis of neural response patterns. The perfor-
mance of the classifier was decreased by hearing loss but returned 
to normal with the hearing aid (Fig. 5c, right). Thus, the failure of 
the hearing aid to restore consonant identification to normal does 
not seem to result from a general loss of frequency selectivity in 
neural responses.

Hearing aid compression decreases the selectivity of responses 
to speech. Our results thus far suggest that, if the low selectivity of 
aided responses to speech reflects a supra-threshold auditory pro-
cessing deficit with hearing loss, the deficit is manifest for only com-
plex sounds. Although this is certainly possible given the nonlinear 
nature of auditory processing, there is also another potential expla-
nation—the low selectivity of responses to speech may be a result of 
distortions caused by the hearing aid itself22,23. The multi-channel 
WDRC algorithm in the hearing aid constantly adjusts the ampli-
fication across frequencies, with each frequency receiving more 
amplification when it is weakly present in the incoming sound 
and less amplification when it is strongly present. This results in a 
compression of incoming sound across frequencies and time into a 
reduced range. As a pure tone is a simple sound with a single fre-
quency and constant amplitude, this compression has relatively little 

impact. However, for complex sounds with multiple frequencies 
that vary in amplitude over time, such as speech, this compression 
serves to decrease both the spectral and temporal contrast.

The WDRC algorithm was designed to replace the normal 
amplification and compression that are lost due to cochlear dam-
age. However, there are two potential problems with this approach. 
First, whereas normal cochlear compression does decrease spec-
tral and temporal contrast, there are also other mechanisms act-
ing in a healthy cochlea that counteract this by increasing contrast  
(for example, cross-frequency suppression) that are not included in 
the WDRC algorithm21. Second, there is evidence to suggest that, 
with mild-to-moderate hearing loss, amplification of low intensity 
sounds is impaired, but compression of moderate and high-intensity 
sounds remains normal33–35. Thus, the total compression for the 
aided condition with mild-to-moderate hearing loss may be higher 
than normal, resulting in an effective decrease in the spectral 
and temporal contrast of complex sounds as represented in the  
neural code.

To investigate the impact of the hearing aid compression on 
the selectivity of responses to speech, we first computed the spec-
trograms of each instance of each consonant before and after pro-
cessing with the hearing aid and measured their contrast (Fig. 6a).  
On average, the spectrotemporal contrast after processing with the 
hearing aid was 15% lower than in the original sound (Fig. 6b, left). 
This decrease in contrast was reflected in the performance of a clas-
sifier that was trained to identify the consonant in each spectro-
gram, which also decreased after processing with the hearing aid 
(Fig. 6b, right).

If the hearing aid compression is responsible for the low selec-
tivity of neural responses, then it should be possible to improve 
selectivity (and, therefore, consonant identification) by providing 
amplification without compression. We presented the same conso-
nant–vowel syllables after linear amplification (with a fixed gain of 
20 dB applied across all frequencies) and compared the results of 
classification and response decomposition with those for the origi-
nal speech. Linear amplification without compression restored both 
the classifier performance and the magnitude of the differential sig-
nal to normal (Fig. 6c). Thus, the failure of the hearing aid to restore 
response selectivity and consonant identification for speech under 
quiet conditions seems to result from hearing aid compression 
rather than a deficit in supra-threshold auditory processing with 
hearing loss. Linear amplification is able to restore the selectivity 
of neural responses and, as a consequence, consonant identification 
by restoring audibility without distorting the spectral and temporal 
features of speech.

Amplification decreases consonant identification in noise for 
all hearing conditions. We next investigated whether removing 
hearing aid compression and providing only linear amplification 
was also sufficient to restore consonant identification to normal 
for speech in the presence of additional sounds. Although linear 
amplification was sufficient to restore consonant identification in 
the presence of a second independent talker, it failed in multi-talker 
noise (Fig. 6d). This suggests that, for speech in noisy conditions, 
there are additional reasons for the failure of the hearing aid to 
restore consonant identification beyond just the distortions caused 
by hearing aid compression.

The failure of both the hearing aid and linear amplifica-
tion to restore consonant identification in noise could reflect a 
supra-threshold auditory processing deficit with hearing loss that is 
manifest only in difficult listening conditions, but this is not neces-
sarily the case. Even with normal hearing, the intelligibility of speech 
in noise decreases as the overall intensity increases (an effect known 
as ‘rollover’, which has a complex physiological basis13,15,36). When the 
background noise is dominated by low frequencies (as is the case for 
multi-talker noise), speech intelligibility decreases by approximately 
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5% for every 10 dB increase in overall intensity above moderate lev-
els, even when the speech-to-noise ratio remains constant14,37. Thus, 
the differences in the perception of moderate-intensity speech in 
noise with normal hearing and that of amplified speech in noise 
with hearing loss may not reflect the effects of hearing loss as such 
but, rather, the unintended consequences of amplifying sounds to 
high intensities to restore audibility.

To assess the impact of rollover on the neural code, we compared 
consonant identification and response decomposition with normal 
hearing before and after linear amplification. The amplification 
to high intensity did not impact consonant identification in quiet 
conditions or in the presence of a second talker, but decreased con-
sonant identification in multi-talker noise (Fig. 7a). This decrease 
in consonant identification in noise at high intensities with normal 
hearing seems to result from a decrease in response selectivity; the 
magnitude of the differential signal was significantly smaller after 
amplification, while the magnitudes of the common signal and total 

noise were unchanged (Fig. 7b; note that, because we did not pres-
ent repeated trials of ‘frozen’ multi-talker noise, we could not isolate 
the individual noise components, but we could still measure the 
total magnitude of all noise components as the difference between 
the PSD and the CSDV,T

shuff).
To determine whether rollover can account for the deficit in con-

sonant identification in noise with hearing loss that remains even 
after linear amplification, we compared consonant identification 
after linear amplification for both hearing loss and normal hearing 
(that is, using responses to amplified speech for both conditions). 
When compared at the same high intensity, consonant identifica-
tion with or without hearing loss was not significantly different  
(Fig. 7c). Thus, the failure of both the hearing aid and linear ampli-
fication to restore consonant identification in noise does not seem 
to reflect a deficit in supra-threshold processing caused by hearing 
loss but, rather, a deficit in high-intensity processing that is present 
even with normal hearing.
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Taken together, our results provide a clear picture of the chal-
lenge that must be overcome to restore normal auditory percep-
tion after mild-to-moderate hearing loss. Amplification is required 
to restore audibility, but can also reduce the selectivity of neural 
responses in complex listening conditions. Thus, a hearing aid must 
provide amplification while also transforming incoming sounds to 
compensate for the loss of selectivity at high intensities. Current 
hearing aids provide the appropriate amplification but fail to imple-
ment the required additional transformation and, in fact, seem to 
further decrease selectivity through compression that decreases the 
spectrotemporal contrast of incoming sounds.

Discussion
This study was designed to identify the reasons why hearing aids 
fail to restore normal auditory perception through an analysis of the 

underlying neural code. Our results suggest that difficulties during 
aided listening with mild-to-moderate hearing loss arise primarily 
from the decreased selectivity of neural responses. Although a hear-
ing aid corrected many of the changes in neural response patterns 
that were caused by hearing loss, the average response patterns elic-
ited by different consonants remained less distinct compared with 
normal hearing. The low selectivity of aided responses to speech did 
not seem to reflect a fundamental deficit in supra-threshold audi-
tory processing as the selectivity of responses to moderate-intensity 
tones was normal. In fact, for speech in quiet conditions, the low 
selectivity resulted from compression in the hearing aid itself that 
decreased the spectrotemporal contrast of incoming sounds; linear 
amplification without compression restored selectivity and conso-
nant identification to normal. However, for speech in multi-talker 
noise, selectivity and consonant identification remained low even 
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after linear amplification. Linear amplification also decreased the 
selectivity of neural responses with normal hearing such that, when 
compared at the same high intensity, consonant identification in 
noisy conditions with normal hearing and hearing loss was similar.

These results are consistent with the idea that, for mild-to-moderate 
hearing loss, decreased speech intelligibility is primarily caused by 
decreased audibility38 rather than supra-threshold processing defi-
cits. While real-world speech perception is influenced by contex-
tual and linguistic factors that our analysis of responses to isolated 
consonants cannot account for, performance in consonant identi-
fication and open-set word recognition tasks is highly correlated 
for both listeners with normal hearing and listeners with hearing 
loss39,40. Of course, there are many listeners whose problems go 
beyond audibility and selectivity for the basic acoustic features of 
speech: more severe or specific hearing loss may result in additional 
supra-threshold deficits10; cognitive factors may interact with hear-
ing loss to create additional difficulties in real-world scenarios7; 

and supra-threshold deficits can exist without any significant loss 
of audibility for a variety of reasons41. However, numerous percep-
tual studies have reported that the intelligibility of speech in noise 
at high intensities for people with mild-to-moderate hearing loss 
is essentially normal in both consonant identification and open-set 
word recognition tasks14,17–20. Unfortunately, owing to rollover, even 
normal processing is impaired at high intensities. Thus, those with 
hearing loss must presently choose between listening naturally to 
low- and moderate-intensity sounds with reduced audibility, or arti-
ficially amplifying sounds to high intensities with rollover (Fig. 7d).

Overcoming the current trade-off between loss of audibility and 
rollover is a challenge, but our results are encouraging with respect 
to the potential of future hearing aids to bring significant improve-
ments. We found that current hearing aids already restore many 
aspects of the neural code for speech to normal, including mean 
spike rates, selectivity for pure tones, fundamental limitations on 
coding (as reflected by internal noise) and sensitivity to prosodic 
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aspects of speech (as reflected by nuisance noise). Instead of com-
pression, which seems to exacerbate the loss of selectivity that 
accompanies amplification to high intensities, the next-generation 
of hearing aids must incorporate additional processing to counter-
act the mechanisms that cause rollover. There have been a number 
of previous attempts to manipulate the features of speech to improve 
perception by, for example, enhancing spectral contrast42–47. 
However, these strategies have typically been developed to coun-
teract processing deficits that are a direct result of severe hearing 
loss—for example, loss of cross-frequency suppression—that may 
not be present with mild-to-moderate loss. New approaches that are 
specifically designed to improve perception at high intensities, even 
for listeners with normal hearing, may be more effective.

The mechanisms that underlie rollover are not well understood. 
One probable contributor is the broadening of cochlear frequency 
tuning with increasing sound level, which decreases the frequency 
selectivity of individual auditory nerve fibres and increases the 
spread of masking from one frequency to another48. However, 
rollover is also apparent when speech is processed to contain pri-
marily temporal cues, suggesting that there are contributions from 
additional factors, such as increased cochlear compression at high 
intensities that distorts the speech envelope or reduced differential 
sensitivity of auditory nerve fibres at intensities that exceed their 
dynamic range36. The simplest way to avoid rollover is to decrease 
the intensity of incoming sounds. There are already consumer 
devices that seek to improve speech perception by controlling 
intensity through sealed in-ear headphones and active noise cancel-
lation49. But for traditional open-ear hearing aids, complete control 
of intensity is not an option; such devices must instead use complex 
sound transformations to counteract the negative effects of high 
intensities without necessarily changing the overall intensity itself.

The required sound transformations are likely to be highly 
nonlinear, and identifying them through traditional engineering 
approaches may be difficult. However, recent advances in machine 
learning may provide a way forward. It may be possible to train deep 
neural networks to learn complex sound transformations to coun-
teract the effects of rollover in listeners with normal hearing or the 
joint effects of rollover and hearing loss in listeners with impaired 
hearing. These complex transformations could also potentially 
address other issues that are ignored by the WDRC algorithm in 
current hearing aids, such as adaptive processes that modulate neu-
ral activity based on high-order sound statistics or over long tim-
escales50,51. Deep neural networks may also be able to learn sound 
transformations that avoid the distortions in binaural cues created 
by current hearing aids52,53, enabling the design of new strategies for 
cooperative processing between devices.

The multi-channel WDRC algorithm in current hearing aids 
is designed to compensate for the dysfunction of outer hair cells 
(OHCs) in the cochlea. The OHCs normally provide amplification 
and compression of incoming sounds but, with hearing loss, their 
function is often impaired either through direct damage or through 
damage to supporting structures54. The true degree of OHC dys-
function in any individual is difficult to determine, so the WDRC 
algorithm provides amplification and compression in proportion to 
the measured loss of audibility across different frequencies, which 
reflects a loss of amplification. However, although severe hearing 
loss may result in the loss of both amplification and compression, 
several studies have found that mild-to-moderate hearing loss 
seems to result in the loss of amplification only33–35. Thus, with 
mild-to-moderate loss, the use of a WDRC hearing aid can result in 
excess compression that distorts the acoustic features of speech22,23. 
Our results demonstrate that these distortions result in the repre-
sentation of different speech elements in the neural code being less 
distinct from each other.

A number of studies of speech perception in people with 
mild-to-moderate hearing loss have found that linear amplification 

without compression is often comparable or superior to WDRC 
hearing aids9,23,55,56. Our analysis of the neural code provides a physi-
ological explanation for these findings and adds support to the 
growing movement to increase uptake of hearing aids through the 
development and provision of simple, inexpensive devices that can 
be obtained over the counter57,58. Cost is a major barrier to hear-
ing aid use—a typical device in the United States costs more than 
US$2,000 (ref. 59). However, most of this cost can be attributed to 
associated services that are bundled with the device, for example, 
testing and fitting. The hardware itself typically accounts for less 
than US$100 (indeed, a recent study demonstrated a prototype 
device that provides adjustable, frequency-specific amplification 
and costs less than US$1; ref. 60). Fortunately, neither the services 
nor premium features that increase cost are essential61. Recent clini-
cal evaluations of over-the-counter personal sound amplification 
products have shown that they often provide a similar benefit to 
premium hearing aids fit by professional audiologists62–64. Thus, 
there is now compelling physiological, psychophysical and clinical 
evidence to suggest that inexpensive, self-fitting devices can provide 
a benefit for people with mild-to-moderate hearing loss that is com-
parable to that provided by current state-of-the-art devices.

This conclusion has important implications for strategies to 
combat the global burden of hearing loss. Simple devices may be 
appropriate only for people with mild-to-moderate loss, but this 
group presently includes more than 500 million people worldwide1. 
Thus, the wide adoption of simple devices could have a substantial 
impact, especially in low-and middle-income countries in which 
the burden of hearing loss is largest and the uptake of hearing aids 
is lowest. Ideally, the next generation of state-of-the-art hearing aids 
will bring improvements in both benefit and affordability. But given 
the need for urgent action to mitigate the impact of hearing loss on 
wellbeing and mental health1,3 and the potential for simple devices 
to provide significant benefit, promoting their use should be con-
sidered to be a potential public health priority.

Methods
Experimental protocol. Experiments were performed on 35 young-adult gerbils 
of both sexes that were born and raised under standard laboratory conditions. 
Twenty of the gerbils were exposed to noise when they were 10–12 weeks old. ABR 
recordings and large-scale IC recordings were performed for all of the gerbils when 
they were 14–18 weeks old. The study protocol was approved by the Home Office 
of the United Kingdom under license number 7007573. All experimental control 
and data analysis was performed using custom code in MATLAB R2019a.

Noise exposure. Sloping mild-to-moderate sensorineural hearing loss was induced 
by exposing anaesthetized gerbils to high-pass-filtered noise with a 3 dB per 
octave roll-off below 2 kHz at 118 dB SPL for 3 h (ref. 65). For anaesthesia, an initial 
injection of 0.2 ml per 100 g body weight was given with fentanyl (0.05 mg per 
ml), medetomidine (1 mg ml−1) and midazolam (5 mg ml−1) at a ratio of 4:1:10, 
respectively. A supplemental injection of approximately 1/3 of the initial dose was 
given after 90 min. The internal temperature was monitored and maintained  
at 38.7 °C.

Auditory brainstem responses. Animals were placed in a sound-attenuated chamber, 
and anaesthesia and internal temperature were maintained as for noise exposure. 
An ear plug was inserted into one ear and a free-field speaker was placed 10 cm 
from the other ear. The sound level was calibrated before each recording using a 
microphone that was placed next to the open ear. Subdermal needles were used 
as electrodes with the active electrode placed behind the open ear, the reference 
placed over the nose and the ground placed into a rear leg. Recordings were 
band-pass filtered between 300 Hz and 3,000 Hz. Clicks (0.1 ms) and tones (4 ms 
with frequencies ranging from 500 Hz to 8,000 Hz in one-octave steps with 0.5 ms 
cosine on and off ramps) were presented at intensities ranging from 5 dB SPL to 
85 dB SPL in 5 dB steps with a 25 ms pause between presentations. All sounds were 
presented 2,048 times (1,024 times with each polarity). Thresholds were defined as 
the lowest intensity at which the r.m.s. of the mean response across presentations 
was more than twice the r.m.s. of the mean of 2,048 trials of activity recorded 
during silence.

Large-scale electrophysiology. Animals were placed into a sound-attenuated 
chamber and anaesthetized for surgery with an initial injection of 0.65 ml per 
100 g body weight of ketamine (100 mg ml−1), xylazine (20 mg ml−1) and saline 
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in a ratio of 5:1:19, respectively. The same solution was infused continuously 
during recording at a rate of approximately 2.2 μl min−1. The internal temperature 
was monitored and maintained at 38.7 °C. A small metal rod was mounted onto 
the skull and used to secure the head of the gerbil in a stereotaxic device. Two 
craniotomies were made along with incisions in the dura mater, and a 256-channel 
multi-electrode array (NeuroNexus) was inserted into the central nucleus of 
the IC in each hemisphere (Fig. 1a and Supplementary Fig. 1). The arrays were 
custom-designed to maximize coverage of the portion of the gerbil IC that is 
sensitive to the frequencies that are present in speech.

MUA measurements. MUA was measured from recordings on each channel of 
the array as follows: (1) a high-pass filter was applied with a cut-off frequency of 
500 Hz; (2) the absolute value was taken; (3) a low-pass filter was applied with 
a cut-off frequency of 300 Hz. This measure of MUA does not require choosing 
a threshold; it simply assumes that the temporal fluctuations in the power at 
frequencies of higher than 500 Hz reflect the spiking of neurons near each 
recording site.

Spike sorting. Single-unit spikes were isolated using Kilosort66 with the default 
parameters. Recordings were separated into overlapping 1 h segments, with a 
new segment starting every 15 min. Kilosort was run separately on each segment 
and clusters from separate segments were chained together if at least 90% of 
their events were identical during their period of overlap. Clusters were retained 
for analysis only if they were present for at least 2.5 h of continuous recording. 
This persistence criterion alone was sufficient to identify clusters that also 
satisfied the usual single-unit criteria with clear isolation from other clusters, 
a lack of refractory period violations and symmetric amplitude distributions 
(Supplementary Fig. 4).

Sounds. Sounds were delivered to speakers (Etymotic ER-2) coupled to tubes 
inserted into both ear canals along with microphones (Etymotic ER-10B+) for 
calibration. The frequency response of these speakers measured at the entrance 
of the ear canal was flat (±5 dB SPL) between 0.2 kHz and 8 kHz. The full set of 
sounds presented is described below. All sounds were presented diotically except 
for multi-talker speech babble noise, which was processed by a head-related 
transfer function to simulate talkers from many different spatial locations.

	(1)	 Tone set 1: 50 ms tones with frequencies ranging from 500 Hz to 8,000 Hz in 
0.5-octave steps and intensities ranging from 6 dB SPL to 83 dB SPL in 7 dB 
steps with 5 ms cosine on and off ramps and a 175 ms pause between tones. 
Tones were presented 8 times each in a random order.

	(2)	 Tone set 2: 50 ms tones with frequencies ranging from 500 Hz to 8,000 Hz in 
0.5-octave steps at 62 dB SPL with 5 ms cosine on and off ramps and a 175 ms 
pause between tones. Tones were presented 128 times each in a random order.

	(3)	 Consonant–vowel syllables: speech utterances taken from the Articulation 
Index LSCP (LDC catalogue number: LDC2015S12). Utterances were from 8 
American English speakers (4 male and 4 female). Each speaker pronounced 
consonant–vowel syllables made from all possible combinations of 12 con-
sonants and 4 vowels. The consonants included the sibilant fricatives ‘ʃ’, ‘ʒ’, 
‘s’ and ‘z’, the stops ‘t’, ‘k’, ‘b’ and ‘d’, the nasals ‘n’ and ‘m’, and the non-sibilant 
fricatives ‘v’ and ‘ð’. The vowels included ‘a’, ‘æ’, ‘i’ and ‘o’. Utterances were pre-
sented in a random order with a 175 ms pause between sounds at an intensity 
of 62 dB SPL (or 82 dB SPL after 20 dB linear amplification). Two identical tri-
als of the full set of syllables were presented for each condition (for example, 
62 dB SPL or 82 dB SPL, with or without a second talker or multi-talker noise, 
with or without hearing aid). All results reported are based on analysis of only 
the first trial, except for those relying on computation of cross-spectral densi-
ties and noise correlations for which both trials were used.

	(4)	 Second independent talker: speech from 16 different talkers taken from the 
UCL Scribe database (https://www.phon.ucl.ac.uk/resource/scribe) provided 
by M. Huckvale was concatenated to create a continuous stream of ongoing 
speech with one talker at a time.

	(5)	 Omni-directional multi-talker speech babble noise: speech from 16 different 
talkers from the Scribe database was summed to create speech babble. The 
speech from each talker was first passed through a gerbil-head-related trans-
fer function67 using software provided by R. Beutelmann (Carl von Ossietzky 
University) to simulate its presentation from a random azimuthal angle.

Hearing aid simulation. Ten-channel WDRC processing was simulated using a 
program provided J. Alexander (Purdue University)68. The crossover frequencies 
between channels were 200, 500, 1,000, 1,750, 2,750, 4,000, 5,500, 7,000 and 
8,500 Hz. The intensity thresholds below which amplification was linear for each 
channel were 45, 43, 40, 38, 35, 33, 28, 30, 36 and 44 dB SPL. The attack and release 
times (the time constants of the changes in gain after an increase or decrease in 
the intensity of the incoming sound, respectively) for all channels were 5 ms and 
40 ms, respectively. The gain and compression ratio for each channel were fit 
individually for each ear of each gerbil using Cam2B.v2, which was provided by 
B. Moore (Cambridge University)69. The gain before compression typically ranged 
from 10 dB at low frequencies to 25 dB at high frequencies. The compression ratios 

typically ranged from 1 to 2.5—that is, the increase in sound intensity required 
to elicit a 1 dB increase in the hearing output ranged from 1 dB to 2.5 dB when 
compression was engaged.

Data analysis. Visualization of population response patterns. To reduce the 
dimensionality of population response patterns, the responses for each neuron 
were first converted to spike count vectors with 5 ms time bins. The responses 
to all syllables from all neurons across all gerbils for a given hearing condition 
were combined into one matrix and a principal component decomposition was 
performed to find a small number of linear combinations of neurons that best 
described the full population. To visualize responses in three dimensions, single 
trials or mean responses were projected into the space defined by the first three 
principal components.

Classification of population response patterns. Populations were formed by 
sampling at random, without replacement, from neurons from across all gerbils 
for a given hearing condition until there were no longer enough neurons 
remaining to form another population. Note that each population therefore 
contained both simultaneously and non-simultaneously recorded neurons. The 
simultaneity of recordings could impact classification if the responses contain 
noise correlations, that is, correlations in trial-to-trial variability, which would be 
present only in simultaneous recordings. But we have previously shown under 
the same experimental conditions that the noise correlations in IC populations 
are negligible70. This was also true of the populations used in this study 
(Supplementary Fig. 5).

Unless otherwise noted, populations of 150 neurons were used and 
classification was performed after converting the responses for each neuron to 
spike count vectors with 5 ms time bins. Only the first 150 ms of the responses 
to each syllable were used to minimize the influence of the vowel. The classifier 
was a support vector machine with a maximum-wins voting strategy based on 
all possible combinations of binary classifiers and tenfold cross-validation. To 
ensure the generality of the results, different classifiers, neural representations and 
population sizes were also tested (Supplementary Figs. 2 and 3).

Computation of spectral densities. Spectral densities were computed as a measure of 
the frequency-specific covariance between two responses (or variance of a single 
response). To compute spectral densities, responses to all syllables with different 
consonants and vowels spoken by different talkers were concatenated in time and 
converted to binary spike count vectors with 1 ms time bins

r =
[

rc=1,v=1,t=1 rc=1,v=1,t=2…rc=C,v=V,t=T
]

where rc,v,t =
[

rc,v,t [1] rc,v,t [2]…rc,v,t [N]
]

 is the binary spike count vector with N 
time bins for the response to one syllable composed of consonant c and vowel v 
spoken by talker t. Responses were then separated into 300 ms segments with 50% 
overlap, and each segment was multiplied by a Hanning window. The CSD between 
two responses was then computed as the average across segments of the discrete 
Fourier transform of one response with the complex conjugate of the discrete 
Fourier transform of the other response

Sr1 ,r2 (f) =
1
M

M
∑

m=1

[

Fmr1 (f)
∗ Fmr2 (f)

]

where Sr1 ,r2 (f) is the CSD between responses r1 and r2, M is the total number of 
segments, Fmr1 (f)

∗ is the complex conjugate of the discrete Fourier transform of the 
mth segment of r1 and Fmr2 (f) is the discrete Fourier transform of the mth segment 
of r2. The values for negative frequencies were discarded. The final spectral density 
was smoothed using a median filter with a width of 0.2 octaves and scaled such that 
its sum across all frequencies was equal to the total covariance between the two 
responses

∑

f
Sr1 ,r2 (f) = cov (r1, r2) .

Several different spectral densities were computed before and after shuffling 
the order of the syllables in the concatenated responses to isolate different sources 
of covariance as described in the Results.

PSD, the power spectral density of a single response:

�r1 = r2 = the response to one trial of speech with all syllables in the original order.
CSD, the CSD of responses to repeated identical trials:
r1 = the response to one trial of speech with all syllables in the original order.
�r2 = the response to another trial of speech with all syllables in the original 
order.
�CSDV,T

shuff , the CSD of responses after shuffling of vowels and talkers, leaving the 
responses matched for consonants only:
r1 = the response to one trial of speech with all syllables in the original order.
r2 = the response to another trial of speech after shuffling of vowels and talkers.
�CSDC,V,T

shuff , the CSD of responses after shuffling of consonants, vowels and 
talkers, leaving the responses matched for syllable onset only:
r1 = the response to one trial of speech with all syllables in the original order.
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�r2 = the response to another trial of speech after shuffling of consonants, vowels 
and talkers.
�CSD0, the CSD of responses after shuffling of consonants, vowels and talkers, 
and randomizing the phase of the Fourier transform of each response segment, 
leaving the responses matched for overall magnitude spectrum only:
r1 = the response to one trial of speech with all syllables in the original order.
�r2 = the response to another trial of speech after shuffling of consonants, vowels 
and talkers.

To isolate the differential signal component of responses to tones, the same 
approach was used with shuffling of frequencies.

Classifying spectrograms. To convert sound waveforms to spectrograms, they were 
first separated into 80 ms segments with an 87.5% overlap and then multiplied 
by a Hamming window. The discrete Fourier transform of each segment was 
taken, then the magnitude was extracted and converted to a logarithmic scale. 
Classification was performed using a support vector machine as described above 
for neural responses. Only the first 150 ms of the responses to each syllable  
were used.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Recordings of consonant–vowel syllables are available from the Linguistic Data 
Consortium (catalogue number: LDC2015S12). Recordings of continuous speech 
are available from the UCL Scribe database (https://www.phon.ucl.ac.uk/resource/
scribe). The database of neural recordings that were analysed in this study is too 
large to be publicly shared, but is available from the corresponding author on 
reasonable request.

Code availability
The custom MATLAB code used in this study is available at GitHub (https://github.
com/nicklesica/neuro).
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sounds were generated by using custom code in Matlab R2019a. Responses were recorded using the Intan Recording Controller v2.06. A 
WDRC hearing aid was simulated using custom code in Matlab R2019a. Hearing-aid parameters were fit to each gerbil using Cam2B.v2.

Data analysis Spike sorting was carried out using Kilosort. Responses were analyzed using custom code in Matlab R2019a. The custom code is available at 
https://github.com/nicklesica/neuro.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Recordings of consonant-vowel syllables are available from the Linguistic Data Consortium (Catalog No.: LDC2015S12). Recordings of continuous speech are 
available from the UCL Scribe database (https://www.phon.ucl.ac.uk/resource/scribe). The database of neural recordings that were analysed in this study is too 
large to be publicly shared, but is available from the corresponding author on reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size was determined on the basis of power analyses using preliminary data. The initial number of animals in the hearing-loss group 
was larger than that in the control group to allow for unsuccessful noise exposure. But the noise exposure was successful more often than 
was predicted, so the hearing-loss group contains more animals than the control group. 

Data exclusions We did not make neural recordings from 4 animals that did not exhibit significant hearing loss after noise exposure. This criterion for exclusion 
was pre-established.

Replication The key results were replicated with two different classifiers and four different response representations (as described in the Supplementary 
information). All attempts at replication produced similar results.

Randomization Assignment to the control and hearing-loss groups was random on a per-animal basis (that is, animals from the same litter were often 
assigned to different groups).

Blinding The investigators were not blinded during data collection because the hearing-aid parameters needed to be fit to each ear of each animal 
with hearing loss before neural activity was recorded. However, the protocols for data collection were predetermined and identical for each 
animal. The investigators were not blinded during the analyses, but all analyses were automated and objective.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and female wild-type gerbils aged 10–18 weeks.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The study protocol was approved by the Home Office of the United Kingdom under license number 7007573.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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