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Abstract9

Hearing healthcare currently meets only a small fraction of the global need. A labor-intensive care model limits10

access to services, especially in low- and middle-income countries, and existing therapies and assistive devices11

provide only limited benefit. Artificial intelligence has the potential to address these problems and transform12

hearing healthcare through advances in a number of areas: the fusion of disparate data to improve diagnosis13

and treatment; the automation of basic services to increase access, efficiency, and safety; and the14

development of new sensory devices that support the full richness of the human experience with or without15

restoration of hearing. Technology developers, together with clinicians and patients, should act urgently on16

this opportunity to develop a new model of hearing healthcare and create a world in which hearing loss is no17

longer a leading cause of disability.18

19

20

Introduction21

Hearing loss affects more than 500 million people worldwide and imposes an economic burden that is22

approaching $1 trillion annually (Wilson et al., 2017; World Health Organization, 2017). For individuals, the23

consequences can range from disrupted language development to declines in mental health, employment24

opportunities and quality of life (Livingston et al., 2020; Marschark et al., 2015; Tomblin et al., 2015). The scale25

of the problem continues to grow as demographic shifts increase the most vulnerable sectors of the26

population: older people and those in low- and middle-income countries (LMICs).27

Current hearing healthcare, which is heavily reliant on specialized equipment and labor-intensive clinician28

services, is failing to cope. As a result, approximately 80% of the people worldwide who need treatment,29

mainly those in LMICs, are not receiving it (Barnett et al., 2017; Orji et al., 2020). The recent COVID-1930

pandemic has further exposed the inadequacy of the current model. The need for social distancing has forced31

services to be greatly reduced or halted altogether and their return to normal remains uncertain.32

Artificial intelligence (AI) has the potential to provide the technological advances required to transform the33

current service model. AI has already revolutionized related areas such as computer vision, automatic speech34

recognition and natural language processing, but has not yet made a significant impact on hearing healthcare.35

Hearing was once at the forefront of technological innovation in medicine. The cochlear implant (CI), for36

example, which enables the perception of sound through direct electrical stimulation of the auditory nerve,37

has provided hearing to almost one million people. It remains the most successful neural prosthetic in terms38

of both performance and penetration (Wilson and Dorman, 2008; Zeng et al., 2008). But in recent years,39

innovation has stalled; interest from academic researchers has waned and market failures that limit40

competition have allowed industry to become complacent (National Academies of Sciences, 2016; President’s41

Council of Advisors on Science and Technology, 2016).42



In this Perspective, we describe the most urgent and important hearing healthcare problems and the potential43

of AI to provide solutions. We first give a brief overview of the auditory system and its disorders. We then44

focus on three areas -- clinical inference, automated care, and assistive devices --- in which AI can have45

immediate impact. Finally, we discuss the mutual benefits of ongoing collaboration between the AI and46

hearing research communities with the potential to create a future in which hearing loss is no longer a barrier47

to human communication or fulfillment.48

The auditory system and its disorders49

The auditory system is a marvel of engineering. Its combination of microsecond temporal precision, sensitivity50

over more than 5 orders of sound magnitude, and flexibility to support tasks ranging from sound localization51

to music appreciation is still without parallel in other natural or artificial systems. It is because the auditory52

system is so powerful that its dysfunction is so devastating; through millennia of biological and cultural53

evolution, we have come to rely heavily on hearing for functions ranging from threat detection and navigation54

to communication and entertainment.55

The remarkable performance of the auditory system is achieved through a complex interplay of biomechanical56

and neural components that implement operations such as signal conditioning, filtering, feature extraction,57

and classification in interconnected stages across the ear and brain (Figure 1A). But many of these components58

are delicate and the function of the system is susceptible to disruption at any of its stages from a number of59

different causes such as: genetic mutation; damage from noise exposure or toxic drugs; degradation through60

aging; or disruption of associated sensory or cognitive systems.61

To diagnose hearing conditions, a wide range of data is often collected in an attempt to provide insight into62

the status of each processing stage (Figure 1B-D). The function of the ear itself is tested through mechanical63

and acoustic measurements, typically with the intent of isolating the source of any deafness (a loss of64

sensitivity to low-intensity sounds; the term “hearing loss” is more general and covers a range of different65

conditions). Electrophysiological measures of neural activity and imaging of brain structures are used to assess66

the early stages of the brain where several common conditions, such as tinnitus (the constant perception of a67

phantom sound, often a ringing), are thought to originate. For the most complex conditions, such as auditory68

processing disorders (e.g. difficulty understanding speech in noisy environments despite “normal” hearing),69

subjective measures such as psychoacoustic and cognitive tests are used.70

Despite this wealth of data, the diagnosis and treatment of hearing conditions is often problematic. The71

primary difficulties arise from the multifactorial nature of the conditions and our limited understanding of72

their mechanistic underpinnings. A given condition (deafness, tinnitus, etc.) can be associated with dysfunction73

in many different processing stages, and dysfunction in a given processing stage can be associated with many74

different conditions. For the most complex problems, it is often difficult to disentangle sensory and cognitive75

components, and objective measures that can differentiate between different underlying causes do not yet76

exist (Liberman et al., 2016; Parthasarathy et al., 2020).77

These difficulties are precisely why AI -- particularly machine learning (ML) -- has the potential to be so valuable78

in hearing healthcare. One of the main advantages of ML is a capacity to identify patterns in complex data that79

far exceeds that of conventional statistical techniques. Clinicians have achieved remarkable success in the80

diagnosis and treatment of hearing conditions through ad hoc processes, but these approaches are81

fundamentally limited. With the help of AI to assimilate vast amounts of disparate data, consider them in their82

full complexity, and infer the optimal course of action using technology that is widely available, hearing83

healthcare could be fundamentally transformed.84





Figure 1 | Measures of auditory structure and function85

(A) The major processing stages of the auditory system. Sound that enters the ear canal causes vibrations of the ear86
drum. These vibrations are transmitted by the ossicle bones in the middle ear to the fluid-filled cochlea in the inner87
ear. Hair cells in the inner ear amplify and transduce motion of the cochlear fluid into electrical signals that are sent88
to the brain. These signals are processed by several specialized pathways in the brainstem and the resulting89
information is integrated in the cortex to produce a coherent auditory experience. Some of the key functions90
performed at each processing stage are indicated in the boxes. Image modified from (Bance, 2007) (permission91
requested). (B) Examples of objective measures used in hearing assessment. Each panel describes one measure and92
provides a schematic illustration of the associated results from a patient with (dark blue) and without (light blue) a93
hearing condition. Key differences are indicated by the arrows. (C) Examples of subjective measures used in hearing94
assessment. (D) Examples of imaging used in hearing assessment.95

Clinical inference96

Clinical inference is a core problem in all medical disciplines. It generally involves the use of diagnostic97

information about patients and their symptoms to infer underlying causes and predict benefits of different98

treatment options. The potential for AI to improve clinical inference in hearing has already been recognized99

and has led to recent efforts in a number of areas such as: estimation of risk from industrial noise100

measurements (Zhao et al., 2019); classification of deafness from genetic markers (Shew et al., 2019); and101

identification of specific cochlear damage from hearing tests (Chang et al., 2019).102

The most focused work so far has been on the diagnosis of conditions in the middle ear (the space behind the103

ear drum that contains the vibrating ossicle bones that transmit sound from the ear canal to the cochlea; see104

Box 1) (Livingstone et al., 2019; Myburgh et al., 2018; Viscaino et al., 2020). Middle ear infections are common105

in children; in fact they are most frequent reason for children to visit the doctor, take antibiotics, and have106

surgery (Rovers et al., 2004). Initial diagnoses are typically made based on images of the ear drum, but the107

classification of these images by clinicians is highly variable. Existing ML technologies (e.g. deep convolutional108

neural networks) have already been applied to similar problems in other areas of medicine such as classifying109

skin lesions (Esteva et al., 2017) or identifying diabetic retinopathy (Gulshan et al., 2016). Initial work has110

shown that similar approaches could be used to identify some of the most prevalent middle ear conditions111

with high accuracy.112

In one recent study, for example, image classifiers were used to identify six different middle ear conditions113

(Cha et al., 2019). Transfer learning from a database of 10,000 ear drum images was used to modify a number114

of publicly-available, pre-trained convolutional neural networks and the two top performers (Inception-V3 and115

ResNet101) were used to create an ensemble classifier that combined the outputs from the two networks.116

Several variations of the network configuration were explored such as adding an additional hidden layer before117

the final classification layer or including hand-designed modifications of image color channels as a118

preprocessing stage. The accuracy of the best classifier reached 90% and there were indications that119

performance might increase further with a larger database.120

Although these initial results are promising, much more work is needed to develop practical applications that121

can be widely deployed in clinics and, more importantly, in remote settings without specialist resources.122

Processing power is unlikely to be a constraint; the accuracy of a classifier based on the MobileNet-V2 network,123

which has only a few million parameters, nearly matched that of the top performers, suggesting that on-device124

inference should be possible if needed. But robustness will be a challenge. The images used for the initial study125

were taken by specialist staff using expensive imaging equipment. For wide deployment, applications will need126

to be accurate despite variations in images taken by non-specialists using inexpensive cameras (Jayawardena127

et al., 2019).128

It should also be possible to go beyond simply automating image-based diagnosis to provide detailed,129

personalized recommendations for treatment by fusing images with other patient data (Binol et al., 2020). For130



Box 1 | AI for middle ear conditions: improved diagnosis and treatment of glue ear

Middle ear conditions affect 10% of all people, primarily as young children (Schilder et al., 2016). Despite their prevalence,

diagnosis remains problematic: accuracy has been estimated at 50% for non-specialists and 75% for specialists (Pichichero and

Poole, 2001). Inaccurate diagnosis leads to a number of problems, including the prescription of unnecessary antibiotics with

consequences for the patient and the planet (Lannon et al., 2011). But most of the people with middle ear conditions live in LMICs

with no access to hearing healthcare and, thus, their conditions go untreated.

AI-assisted care for middle ear conditions could bring dramatic improvements in both efficacy and accessibility. Consider, for

example, otitis media with effusion, also known as glue ear, which is characterized by a build-up of thick fluid in the middle ear

that prevents the transmission of sound from the ear drum to the cochlea. The majority of cases are mild and self-resolving, but

children with persistent glue ear face developmental challenges with significant long-term consequences (Bennett et al., 2001;

Roberts et al., 1986).

Early detection

Detection of glue ear can be difficult; it is common in toddlers who may be unaware of or unable to describe their hearing loss, so

the condition may go unnoticed until it has led to delays in the development of speech and language. However, recent studies

have demonstrated that ML can be used to identify glue ear from ear drum images (see text). If these technologies can be

developed into applications that can be incorporated into routine health checks, they may enable the early detection of glue ear

and help to avoid months of developmental disruption in both high-income countries and LMICs.

Prediction of time to resolution

Even after diagnosis, there is uncertainty regarding the appropriate course of treatment. The most common treatment is the

insertion of grommets (ventilation tubes) into the ear drum to drain the fluid, a surgical procedure performed under general

anesthesia with risk of damage to the ear. Since many cases resolve spontaneously, surgery is not usually performed until after

several months of “watchful waiting”. The development of AI with the ability to fuse ear drum images with other information

about patient history, genetics, etc. and predict time to resolution could help to avoid both unnecessary treatment and

unnecessary waiting. In LMICs where surgery may not be readily available, children with cases that are not likely to resolve quickly

could be provided with bone conduction headbands (which transform sound into vibrations of the skull that reach the cochlea

without passing through middle ear) to restore hearing and maintain development.

Prediction of surgical benefit

Even for those who do receive grommets, the uncertainty continues. The grommets typically remain in place for 6-9 months before

being ejected by the healing ear drum, by which time the underlying condition has resolved and hearing has returned to normal.

However, the condition recurs in approximately 30% of patients and repeat surgery is usually needed, with further risk of damage

to the ear (Browning et al., 2010). AI that is able to predict which cases are unlikely to be resolved by traditional grommets would

allow for the use of alternative approaches from the start.

Images of the ear drum taken from an
otoendoscope within the ear canal. Left:
normal, with the white ossicle bones that
connect the ear drum to the cochlea
visible behind the ear drum. Middle: glue
ear, with fluid behind the ear drum.
Right: with grommet in place

normal glue ear

ossicles

grommet



more complex conditions, this fusion will be essential to disentangle the complex interactions between the131

ear and brain. But making optimal use of the disparate data collected for each patient will be difficult. For132

some conditions, there is little agreement on best criteria for diagnosis (for an example of ongoing debates,133

see discussion of auditory processing disorders (Iliadou and Kiese-Himmel, 2018; Neijenhuis et al., 2019)). And134

even when diagnosis is straightforward, the best treatment may not be clear.135

In the case of tinnitus, for example, there is no widely accepted treatment, largely because the underlying136

mechanisms remain poorly understood (Shore and Wu, 2019). There are some treatments that seem to be137

effective in some cases, such as cognitive behavioral therapy, but there is currently no method for predicting138

which treatment might be most beneficial for a given patient other than trial-and-error (Baguley et al., 2013;139

Cima et al., 2014). By applying ML to the full complement of patient data, it may be possible to predict which140

treatment will provide the most benefit for a given patient, even without a detailed mechanistic understanding141

of the underlying problem.142

Assembling the datasets required to make the best use of AI will be a challenge. Patients are often served by143

specialists across multiple healthcare sectors, with each holding vital pieces of information. Even in high-144

income countries, the systems used to capture, store, share and analyze condition-specific data are largely145

inadequate. Unlocking and integrating these data will be critical for the precision “phenotyping” required to146

recommend individualized treatments based on specific underlying conditions, as well as to optimize the147

testing of new treatments in clinical trials and to make the most of the valuable data that these trials produce148

(Robinson, 2012).149

Efforts are underway either to join existing hearing datasets (NIHR, 2020) or create new disease or treatment150

registries for analysis (Sing Registry, 2020; Yung et al., 2005). The initial success of the efforts will depend on151

the alignment of incentives across the different aspects of clinical practice. But as clinicians and administrators152

begin to see the benefits of data sharing for the rapid translation of research into improved care, more153

resources will be allocated to building the necessary data infrastructure. It is critical to ensure that the resource154

allocations faithfully reflect the global burden of hearing loss to avoid potential biases (Gianfrancesco et al.,155

2018). For example, technologies developed based on data from high-income countries may not be156

appropriate for use in LMICs where different conditions are prevalent.157

Automated Care158

At present, nearly all hearing healthcare services -- from initial screening and consultation through to follow-159

up and rehabilitation -- are provided in-person by highly trained staff using specialized equipment. This “high-160

touch” model restricts care to places where the required resources are readily available, thus excluding many161

LMICs, as well as remote locations in high-income countries (WHO, 2013). The accessibility of high-touch care162

has been further reduced by the COVID-19 pandemic; even in places with the required resources, vulnerable163

patients may be unwilling or unable to seek in-person care and staff may be unable to provide it safely.164

In recent years, there have been efforts to improve accessibility through remote care in which a clinician165

provides services to a patient in a different location over the internet (Swanepoel et al., 2010). While this166

approach does have the potential to improve accessibility and efficiency, the scalability of any model that167

continues to rely heavily on specialist staff, equipment, and facilities is ultimately limited. Fortunately, many168

of the most common basic services in hearing healthcare can be readily automated.169

One example is the measurement of an audiogram (the standard clinical test for deafness; Figure 1C). In a170

standard measurement, a clinician presents tones at different frequencies and intensities, generally according171

to a prescribed protocol, in order to determine the patient’s sensitivity threshold for each frequency. The172

patient signals their perception of a tone either verbally or by pushing a button or touchscreen.173



The automation of this process in standard clinical conditions (i.e. with medical-grade earphones in a sound-174

proof chamber) is straightforward, and a recent study demonstrated that ML-based approaches can provide175

more comprehensive measurements in less time than the standard approach (Barbour et al., 2019). Gaussian176

process regression was used to estimate the probability of a listener detecting a tone across a range of177

different frequencies and intensities, with the frequency and intensity for each tone presentation chosen to178

maximize the expected decrease in the posterior variance of the estimates. Despite placing few constraints on179

audiogram shape (other than continuity in frequency and monotonicity in intensity), this approach was able180

to provide an estimate of sensitivity thresholds across the full range of audible frequencies in less time than is181

typically required to measure thresholds at only six discrete frequencies. This additional information may be182

critical for differentiating between different hearing conditions.183

Another example of a basic service that can be readily automated is the “fitting” of a CI (the fine tuning of the184

device’s free parameters after the patient has fully recovered from surgery). In the standard approach to185

fitting, a clinician establishes the dynamic range of electrical stimulation by adjusting the current emitted by186

each electrode on the device while asking the patient to report their subjective sensation. The clinician then187

programs the device with a sound-to-current mapping based on the measured dynamic range (often through188

an ad hoc process (Vaerenberg et al., 2014)) and makes adjustments as the patient reports their perception of189

sound. Proof-of-concept studies have established that an automated fitting using Bayesian networks can190

recommend maps that are comparable to those chosen by clinicians (Battmer et al., 2015; Buechner et al.,191

2015; Meeuws et al., 2017) and that the entire fitting process can, in principle, be done by the patient192

themselves without the need for a clinician (Meeuws et al., 2020).193

The challenge comes when attempting to automate services in non-clinical settings, e.g. remote locations in194

LMICs, where neither the specifics of the equipment nor the environment can be guaranteed. For CI fitting,195

the safety of the patient must be considered; inappropriate electrical stimulation can cause non-auditory196

sensations or even pain. For audiogram measurement, the results must be robust to uncontrolled acoustic197

conditions (Sandström et al., 2020). AI can potentially help by allowing the problem to be framed as audiogram198

inference rather than audiogram measurement. Given a sufficient training dataset of paired audiograms199

measured under non-ideal and ideal conditions (perhaps supplemented by data augmentation) along with200

calibration routines to determine background noise levels, earphone properties, etc., it may be possible to201

infer the true audiogram from non-ideal measurements.202

Assistive Devices203

There are not yet any biological treatments for most forms of hearing loss, so care is generally limited to the204

provision of assistive devices (Figure 2). For profound deafness, the only available option is to provide direct205

electrical stimulation of the auditory nerve through a CI. For partial deafness, a hearing aid (HA) may be able206

to help the ear process sound naturally by providing suitable amplification. In both types of devices, sounds207

are received by microphones and digitized for signal processing that is customized for each listener through a208

fitting process as described above. The processed signals are then used to generate sound (for HAs) or current209

(for CIs).210

The signal processing in hearing devices improved rapidly during their early development but in recent years211

progress has been stagnant (Lesica, 2018; Wilson, 2015; Zeng, 2017). The use of AI has thus far been limited212

to secondary functions such as automated adjustment or fall detection. But AI has the potential to dramatically213

improve the primary signal processing in hearing devices and, in particular, to address the most common214

problem reported by device users: difficulty understanding speech in a setting with multiple talkers or215

background noise (the so-called “cocktail party” problem). Many attempts have been made to address this216

difficulty, such as using directional microphones to isolate sound sources in front of the listener or denoising217

218





Figure 2 | AI for the hearing devices of the future219

(A) The key elements of future hearing devices. Current hearing devices use a microphone to pick up sound, which220

is amplified and filtered before being digitized for signal processing; the processing parameters are fixed after fitting221

in an audiologist’s office; the processed digital signals are converted to either an analog signal delivered to a speaker222

in hearing aids (HAs) or an electrical signal delivered to electrodes in cochlear implants (CIs) (bottom-left insert). (B)223

Examples of how AI could transform the experience of a deaf person throughout their entire life. The boxes indicate224

the current state-of-the-art (Now) and the potential for improvement (With AI) in screening and diagnosis (left),225

devices and implantation (middle), and fitting and therapy (right).226

sounds through simple filtering based on the typical low-order statistics of speech, but the benefits of these227

features in real-world listening conditions are limited (Cox et al., 2014; Humes et al., 2017).228

Recent work has demonstrated that approaches based on deep neural networks can be used to dramatically229

improve understanding of speech in noise for HA users. In just a few years, this work has progressed rapidly230

from separating the voice of a known talker from steady-state noise to separating multiple unknown talkers231

in reverberant environments (Wang and Chen, 2018), which required solving the “permutation problem” of232

assigning a network output for each sound source in the input when the true number and composition of233

sources is unknown. This feat was achieved by processing incoming sound in two stages: a frame-by-frame234

source separation and dereverberation stage that uses a U-net architecture (an encoder-decoder235

convolutional neural network with skip connections) followed by a temporal convolutional network that236

connects sources across frame sequences (Liu and Wang, 2019). When this processing is used to denoise237

speech, the performance of HA users in recognition tasks can match or even exceed normal levels (Healy et238

al., 2020). Similar approaches are also being developed for CIs and have produced promising initial results239

(Goehring et al., 2019; Lai et al., 2018).240

Currently this processing must be performed offline, so further work is needed to achieve similar performance241

with causal networks that can run in real-time. Ideally, the computational and power requirements would also242

be reduced to allow the processing to be run directly on a hearing device (Wu et al., 2019). Alternatively,243

provided that the latency can be sufficiently reduced, at least some of the processing could be performed on244

a device-connected smartphone or even in the cloud. But if the delay between either the perception of sounds245

and their associated visual cues or the production and perception of the user’s own voice becomes too large,246

it can be severely disruptive. A latency of 10-20 ms is generally considered tolerable by hearing device users247

(Goehring et al., 2018).248

Separating different sound sources is only the first step toward helping listeners overcome difficulties249

understanding speech in noise. The second step, which is even more challenging, is determining which sources250

a device should amplify and which it should attenuate. In some situations, e.g. a single talker in a background251

of continuous fan noise, it may be obvious which source is of interest. But in others, e.g. a room full of multiple252

talkers, a source that is of primary interest one minute may become a distraction the next.253

To address this problem, efforts are underway to bring hearing devices under “cognitive control”. When a254

listener is attending to a particular sound source, the fluctuations in their brain’s neural activity track the255

fluctuations in the amplitude of the attended source (Mesgarani and Chang, 2012). Thus, the source of interest256

at any given time can be inferred from correlations between recorded neural activity and possible sources of257

interest. Initial studies suggest that recordings that are sufficient to identify the source of interest can be258

obtained from a single electrode within the ear canal, which could easily be integrated with a hearing device259

(An et al., 2020; Fiedler et al., 2017; O’Sullivan et al., 2015).260

Another promising approach is to move beyond hearing devices per se toward a more comprehensive261

augmented reality (AR) system (Brown Jaloza, 2020). If current trends continue, systems of integrated262

wearable and associated devices with a variety of multi-modal sensors of external and internal signals will263



soon become common. Such systems would provide powerful platforms to support deaf people (see Box 2).264

For example, to support speech understanding, AR glasses could provide eye tracking to aid inference of the265

current sound source of interest along with real-time speech-to-text captioning for instances when auditory266

perception fails. Such multi-modal systems would also open up new possibilities for treating conditions267

typically associated with deafness, such as tinnitus, memory loss, or dizziness. There is much work to be done268

before the full potential of assistive devices can be realized but, with the power of AI, there is little doubt that269

each of the individual technical challenges can be overcome; the real difficulty lies in integrating the various270

technologies to provide a seamless user experience.271

Outlook272

The current model of hearing healthcare improves the lives of millions of people every year. But it is far from273

optimal: children with middle ear conditions are triaged to “watchful waiting” while their development is274

disrupted; people with tinnitus are subject to treatment by trial-and-error, often with little or no benefit; the275

deaf are provided with devices that don’t allow them to understand speech in noise or enjoy music. And those276

are the lucky ones: most people with hearing conditions live in LMICs with little or no access to treatment or277

support of any kind.278

Despite the potential for AI to produce dramatic improvements, it has yet to make a significant impact. We279

have described opportunities for AI to reshape hearing healthcare and have outlined a vision for a future280

where AI not only transforms the diagnosis and treatment of hearing conditions but also supports those who281

live with deafness to engage with the world on their own terms. But for this potential to be realized, there are282

challenges that must be overcome.283

The prevailing business model of hearing healthcare will need to change. Regulations that restrict the284

manufacturing and distribution of hearing devices have created a highly-concentrated market in which285

consumers are forced to choose from only a small number of manufacturers and service providers (National286

Academies of Sciences, 2016; President’s Council of Advisors on Science and Technology, 2016). But action is287

finally being been taken to remove unnecessary barriers and increase competition (Warren and Grassley,288

2017), leading to the recent introduction of personal sound amplification products (PSAPs), which can be sold289

over the counter and provide comparable benefit to standard hearing aids at a fraction of the cost (Brody et290

al., 2018; Cho et al., 2019; Humes et al., 2017). These developments have paved the way for full market291

disruption through AI-powered devices that provide even more benefit along with automated services.292

Our limited understanding of the auditory system and its disorders presents a more fundamental challenge,293

but even this can be overcome through close collaboration between AI and hearing researchers. Initial294

attempts to make direct comparisons between deep artificial neural networks and biological neural networks295

in the brain have already provided insights into the computational mechanisms that underlie hearing and296

generated new hypotheses to be tested experimentally (Fontan et al., 2020; Huang et al., 2018; Kell et al.,297

2018; Keshishian et al., 2020; Schrimpf et al., 2020). To realize the full potential of this approach, AI researchers298

will need to develop new tools that are able to match the full complexity of auditory processing, with parallel299

computations across multiple timescales from microseconds to minutes (Picton, 2013), integration of inputs300

from other sensory and cognitive modalities (Atilgan et al., 2018), and flexibility to perform a number of301

qualitatively different tasks (Bregman, 1994).302

Hearing researchers can contribute to this development by sharing their understanding of how these303

complexities are handled by the biological neural networks in the brain. The resulting tools will have the304

potential to be transformative not only for hearing, but also for other domains in which multi-scale, multi-305

modality, and multi-task capabilities are critical. Hearing researchers can also share experience gained through306

a long history of wearable device design (Levitt, 2007) to help hardware developers meet the needs of modern307



Box 2 | Supporting multiple normals through AI

Hearing healthcare is focused on treating deafness, but this outcome is not always feasible or even desirable. The majority of those

who are currently profoundly deaf will never have their hearing restored simply because of limited surgical capacity. And while CIs

have clearly improved the lives of many deaf people, they would not necessarily do so for everyone. Some people may have a

specific condition that cannot be addressed by a CI. Others who could have their hearing restored may prefer to remain deaf; not

all people with hearing loss view it as a problem to be fixed (National Association of the Deaf, 2020).

While AI can certainly transform restorative treatments for deafness, it’s impact could be even larger for those who remain deaf.

Much of the disability associated with deafness arises from the fact that hearing is currently required for engagement in society.

AI has the potential to bring about a new societal model with support for “multiple normals,” in which alternative modes of

engagement are readily available (Friedner et al., 2019). But the inclusion of deaf people in the development of new technologies

at the earliest stages is critical to ensure that the results are matched to user needs (Hill, 2020).

Supporting informed decision making

The benefit that an individual receives from a CI can vary widely. Given that a CI also has

downsides -- significant upfront and ongoing costs, risks and complications associated with

surgery, continued dependence on associated support and services, etc. -- decisions about

whether to undergo implantation can be difficult. Accurate predictions of benefit would be

a great help; unfortunately, such predictions are not currently available. Attempts to

explain variation in CI outcomes through traditional approaches have been largely

unsuccessful (Zhao et al., 2020). But efforts to apply ML to the problem have produced

promising initial results.

In one recent study, a support vector machine classifier was used to predict improvements

in speech perception in children after implantation (Feng et al., 2018). The inputs to the

classifier were morphological measures of neural preservation from MRI images in higher-

level auditory and cognitive regions. Based on these image data alone, the correlation

between the classifier prediction and the actual benefit observed 6 months after

implantation approached 0.5. With further development to build predictive models that

fuse image data with other measures of auditory structure and function (see Figure 1) and

other patient data, much more accurate predictions may be possible.

Supporting hearing-optional communication

It is becoming increasingly easy to imagine a world in which deafness is not a disability, as

AI is already making many settings more inclusive. In higher education, for example, much

of the content is delivered as structured communication from teacher to students through

technology platforms on which accessibility features are now readily available; standard

software, such as Powerpoint, has the capacity to provide captions in multiple languages

in real-time during ongoing presentations. The recent switch to remote learning because

of COVID-19, which requires all communication between teachers and students to be

routed through technology platforms, provides an opportunity to make accessibility

features part of standard leaning models by default.

Supporting alternative modes of unstructured social communication is more challenging,

as many deaf people communicate through signed rather than spoken language. But

technologies for real-time automated translation can potentially bridge this gap. One

recent study demonstrated the potential for a glove-like device that tracks finger

movements to enable translation from American Sign Language to English (Zhou et al.,

2020). This technology required the coordinated development of hardware that is

comfortable, durable, and flexible and associated software to classify signals from the device using support vector machines.

Though the overall accuracy of the system in this initial study was 98%, the vocabulary was limited to only 11 gestures, so much

more work is needed to enable use of the full complement of gestures as well as integration with facial and other movements.

Applications based on such technology have the potential to support natural communication not only between deaf and hearing

people but also between deaf people from different countries, each of which has its own unique signed language.

A brain image indicating areas (red
and green) where pre-implantation
morphology was predictive of CI
benefit, such as occipital and pre-
frontal cortices, and areas (blue)
that were impacted by deafness
but were not predictive of benefit,
such as primary auditory cortex.
Image from (Feng et al., 2018)
(permission requested).

A translation device with
stretchable sensor arrays on each
finger attached to a wireless circuit
board on the wrist. Image from
(Zhou et al., 2020) (permission
requested).



wearables: low-latency, always-on processing; miniaturized, low-power platforms; and durability and comfort308

for long-term, frequent use.309

Ongoing collaboration between AI and hearing researchers would create a win-win situation for both310

communities and also help to ensure that new technologies are well matched to the needs of users (Davies-311

Venn and Glista, 2019; Lindsell et al., 2020). With coordinated and bold efforts, we could together spark312

another technological revolution that would dramatically transform hearing healthcare. With the power of AI,313

a world in which hearing loss is no longer a disability, even for those who continue to live with it, is finally314

within reach.315
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